壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
XXX大學
畢 業(yè) 設 計(論 文)
題 目: 輸送帶彎曲阻力測試試驗臺設計與分析
作 者:
指導教師:
專 業(yè):
時 間:
附錄A
先進制造技術的新發(fā)展
摘要:本文介紹了當今制造技術面臨的問題,論述了先進制造的前沿科學,并展望了先進制造技術的發(fā)展前景。
關鍵詞:問題;先進制造技術;前沿科學;應用前景
制造業(yè)是現(xiàn)代國民經(jīng)濟和綜合國力的重要支柱,其生產(chǎn)總值一般占一個國家國內(nèi)生產(chǎn)總值的20%~55%。在一個國家的企業(yè)生產(chǎn)力構成中,制造技術的作用一般占60%左右。專家認為,世界上各個國家經(jīng)濟的競爭,主要是制造技術的競爭。其競爭能力最終體現(xiàn)在所生產(chǎn)的產(chǎn)品的市場占有率上。隨著經(jīng)濟技術的高速發(fā)展以及顧客需求和市場環(huán)境的不斷變化,這種競爭日趨激烈,因而各國政府都非常重視對先進制造技術的研究。
1 當前制造科學要解決的問題
當前制造科學要解決的問題主要集中在以下幾方面:
(1)制造系統(tǒng)是一個復雜的大系統(tǒng),為滿足制造系統(tǒng)敏捷性、快速響應和快速重組的能力,必須借鑒信息科學、生命科學和社會科學等多學科的研究成果,探索制造系統(tǒng)新的體系結構、制造模式和制造系統(tǒng)有效的運行機制。制造系統(tǒng)優(yōu)化的組織結構和良好的運行狀況是制造系統(tǒng)建模、仿真和優(yōu)化的主要目標。制造系統(tǒng)新的體系結構不僅對制造企業(yè)的敏捷性和對需求的響應能力及可重組能力有重要意義,而且對制造企業(yè)底層生產(chǎn)設備的柔性和可動態(tài)重組能力提出了更高的要求。生物制造觀越來越多地被引入制造系統(tǒng),以滿足制造系統(tǒng)新的要求。
(2)為支持快速敏捷制造,幾何知識的共享已成為制約現(xiàn)代制造技術中產(chǎn)品開發(fā)和制造的關鍵問題。例如在計算機輔助設計與制造(CAD/CAM)集成、坐標測量(CMM)和機器人學等方面,在三維現(xiàn)實空間(3-Real?Space)中,都存在大量的幾何算法設計和分析等問題,特別是其中的幾何表示、幾何計算和幾何推理問題;在測量和機器人路徑規(guī)劃及零件的尋位(如Localization)等方面,存在C-空間(配置空間Configuration?Space)的幾何計算和幾何推理問題;在物體操作(夾持、抓取和裝配等)描述和機器人多指抓取規(guī)劃、裝配運動規(guī)劃和操作規(guī)劃方面則需要在旋量空間(Screw?Space)進行幾何推理。制造過程中物理和力學現(xiàn)象的幾何化研究形成了制造科學中幾何計算和幾何推理等多方面的研究課題,其理論有待進一步突破,當前一門新學科--計算機幾何正在受到日益廣泛和深入的研究。
(3)在現(xiàn)代制造過程中,信息不僅已成為主宰制造產(chǎn)業(yè)的決定性因素,而且還是最活躍的驅(qū)動因素。提高制造系統(tǒng)的信息處理能力已成為現(xiàn)代制造科學發(fā)展的一個重點。由于制造系統(tǒng)信息組織和結構的多層次性,制造信息的獲取、集成與融合呈現(xiàn)出立體性、信息度量的多維性、以及信息組織的多層次性。在制造信息的結構模型、制造信息的一致性約束、傳播處理和海量數(shù)據(jù)的制造知識庫管理等方面,都還有待進一步突破。
(4)各種人工智能工具和計算智能方法在制造中的廣泛應用促進了制造智能的發(fā)展。一類基于生物進化算法的計算智能工具,在包括調(diào)度問題在內(nèi)的組合優(yōu)化求解技術領域中,受到越來越普遍的關注,有望在制造中完成組合優(yōu)化問題時的求解速度和求解精度方面雙雙突破問題規(guī)模的制約。制造智能還表現(xiàn)在:智能調(diào)度、智能設計、智能加工、機器人學、智能控制、智能工藝規(guī)劃、智能診斷等多方面。
這些問題是當前產(chǎn)品創(chuàng)新的關鍵理論問題,也是制造由一門技藝上升為一門科學的重要基礎性問題。這些問題的重點突破,可以形成產(chǎn)品創(chuàng)新的基礎研究體系。
2 現(xiàn)代機械工程的前沿科學
不同科學之間的交叉融合將產(chǎn)生新的科學聚集,經(jīng)濟的發(fā)展和社會的進步對科學技術產(chǎn)生了新的要求和期望,從而形成前沿科學。前沿科學也就是已解決的和未解決的科學問題之間的界域。前沿科學具有明顯的時域、領域和動態(tài)特性。工程前沿科學區(qū)別于一般基礎科學的重要特征是它涵蓋了工程實際中出現(xiàn)的關鍵科學技術問題。
超聲電機、超高速切削、綠色設計與制造等領域,國內(nèi)外已經(jīng)做了大量的研究工作,但創(chuàng)新的關鍵是機械科學問題還不明朗。大型復雜機械系統(tǒng)的性能優(yōu)化設計和產(chǎn)品創(chuàng)新設計、智能結構和系統(tǒng)、智能機器人及其動力學、納米摩擦學、制造過程的三維數(shù)值模擬和物理模擬、超精度和微細加工關鍵工藝基礎、大型和超大型精密儀器裝備的設計和制造基礎、虛擬制造和虛擬儀器、納米測量及儀器、并聯(lián)軸機床、微型機電系統(tǒng)等領域國內(nèi)外雖然已做了不少研究,但仍有許多關鍵科學技術問題有待解決。
信息科學、納米科學、材料科學、生命科學、管理科學和制造科學將是改變21世紀的主流科學,由此產(chǎn)生的高新技術及其產(chǎn)業(yè)將改變世界的面貌。因此,與以上領域相交叉發(fā)展的制造系統(tǒng)和制造信息學、納米機械和納米制造科學、仿生機械和仿生制造學、制造管理科學和可重構制造系統(tǒng)等會是21世紀機械工程科學的重要前沿科學。
2.1 制造科學與信息科學的交叉--制造信息科學
機電產(chǎn)品是信息在原材料上的物化。許多現(xiàn)代產(chǎn)品的價值增值主要體現(xiàn)在信息上。因此制造過程中信息的獲取和應用十分重要。信息化是制造科學技術走向全球化和現(xiàn)代化的重要標志。人們一方面對制造技術開始探索產(chǎn)品設計和制造過程中的信息本質(zhì),另一方面對制造技術本身加以改造,以使得其適應新的信息化制造環(huán)境。隨著對制造過程和制造系統(tǒng)認識的加深,研究者們正試圖以全新的概念和方式對其加以描述和表達,以進一步達到實現(xiàn)控制和優(yōu)化的目的。
與制造有關的信息主要有產(chǎn)品信息、工藝信息和管理信息,這一領域有如下主要研究方向和內(nèi)容:
(1)?制造信息的獲取、處理、存儲、傳遞和應用,大量制造信息向知識和決策轉化。
(2)?非符號信息的表達、制造信息的保真?zhèn)鬟f、制造信息的管理、非完整制造信息狀態(tài)下的生產(chǎn)決策、虛擬管理制造、基于網(wǎng)絡環(huán)境下的設計和制造、制造過程和制造系統(tǒng)中的控制科學問題。
這些內(nèi)容是制造科學和信息科學基礎融合的產(chǎn)物,構成了制造科學中的新分支--制造信息學。
2.2 微機械及其制造技術研究
微型電子機械系統(tǒng)(MEMS),是指集微型傳感器、微型執(zhí)行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機電系統(tǒng)。MEMS技術的目標是通過系統(tǒng)的微型化、集成化來探索具有新原理、新功能的元件和系統(tǒng)。MEMS的發(fā)展將極大地促進各類產(chǎn)品的袖珍化、微型化,成數(shù)量級的提高器件與系統(tǒng)的功能密度、信息密度與互聯(lián)密度,大幅度地節(jié)能、節(jié)材。它不僅可以降低機電系統(tǒng)的成本,而且還可以完成許多大尺寸機電系統(tǒng)無法完成的任務。例如用尖端直徑為5μm的微型鑷子可以夾起一個紅細胞;制造出3mm大小能夠開動的小汽車;可以在磁場中飛行的像蝴蝶大小的飛機等。MEMS技術的發(fā)展開辟了技術全新的領域和產(chǎn)業(yè),具有許多傳統(tǒng)傳感器無法比擬的優(yōu)點,因此在制造業(yè)、航空、航天、交通、通信、農(nóng)業(yè)、生物醫(yī)學、環(huán)境監(jiān)控、軍事、家庭以及幾乎人們接觸到的所有領域中都有著十分廣闊的應用前景。
微機械是機械技術與電子技術在納米尺度上相融合的產(chǎn)物。早在1959年就有科學家提出微型機械的設想,1962年第一個硅微型壓力傳感器問世。1987年美國加州大學伯克利分校研制出轉子直徑為60"120μm的硅微型靜電電動機,顯示出利用硅微加工工藝制作微小可動結構并與集成電路兼容制造微小系統(tǒng)的潛力。微機械技術有可能像20世紀的微電子技術那樣,在21世紀對世界科技、經(jīng)濟發(fā)展和國防建設產(chǎn)生巨大的影響。近10年來,微機械的發(fā)展令人矚目。其特點如下:相當數(shù)量的微型元器件(微型結構、微型傳感器和微型執(zhí)行器等)和微系統(tǒng)研究成功,體現(xiàn)了其現(xiàn)實的和潛在的應用價值;多種微型制造技術的發(fā)展,特別是半導體微細加工等技術已成為微系統(tǒng)的支撐技術;微型機電系統(tǒng)的研究需要多學科交叉的研究隊伍,微型機電系統(tǒng)技術是在微電子工藝的基礎上發(fā)展的多學科交叉的前沿研究領域,涉及電子工程、機械工程、材料工程、物理學、化學以及生物醫(yī)學等多種工程技術和科學。
目前對微觀條件下的機械系統(tǒng)的運動規(guī)律,微小構件的物理特性和載荷作用下的力學行為等尚缺乏充分的認識,還沒有形成基于一定理論基礎之上的微系統(tǒng)設計理論與方法,因此只能憑經(jīng)驗和試探的方法進行研究。微型機械系統(tǒng)研究中存在的關鍵科學問題有微系統(tǒng)的尺度效應、物理特性和生化特性等。微系統(tǒng)的研究正處于突破的前夜,是亟待深入研究的領域。
2.3 材料制備/零件制造一體化和加工新技術基礎
材料是人類進步的里程碑,是制造業(yè)和高技術發(fā)展的基礎。每一種重要新材料的成功制備和應用,都會推進物質(zhì)文明,促進國家經(jīng)濟實力和軍事實力的增強。21世紀中,世界將由資源消耗型的工業(yè)經(jīng)濟向知識經(jīng)濟轉變,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的設計實現(xiàn)定量化、數(shù)字化;要求材料和零件的制備快速、高效并實現(xiàn)二者一體化、集成化。材料和零件的數(shù)字化設計與擬實仿真優(yōu)化是實現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造及二者一體化、集成化制造的關鍵。一方面,通過計算機完成擬實仿真優(yōu)化后可以減少材料制備與零件制造過程中的實驗性環(huán)節(jié),獲得最佳的工藝方案,實現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造;另一方面,根據(jù)不同材料性能的要求,如彈性模量、熱膨脹系數(shù)、電磁性能等,研究材料和零件的設計形式。進而結合傳統(tǒng)的去除材料式制造技術、增加材料式覆層技術等,研究多種材料組分的復合成形工藝技術。形成材料與零件的數(shù)字化制造理論、技術和方法,如快速成形技術采用材料逐漸增長的原理,突破了傳統(tǒng)的去材法和變形法機械加工的許多限制,加工過程不需要工具或模具,能迅速制造出任意復雜形狀又具有一定功能的三維實體模型或零件。?
2.4 機械仿生制造
21世紀將是生命科學的世紀,機械科學和生命科學的深度融合將產(chǎn)生全新概念的產(chǎn)品(如智能仿生結構),開發(fā)出新工藝(如生長成形工藝)和開辟一系列的新產(chǎn)業(yè),并為解決產(chǎn)品設計、制造過程和系統(tǒng)中一系列難題提供新的解決方法。這是一個極富創(chuàng)新和挑戰(zhàn)的前沿領域。
地球上的生物在漫長的進化中所積累的優(yōu)良品性為解決人類制造活動中的各種難題提供了范例和指南。從生命現(xiàn)象中學習組織與運行復雜系統(tǒng)的方法和技巧,是今后解決目前制造業(yè)所面臨許多難題的一條有效出路。仿生制造指的是模仿生物器官的自組織、自愈合、自增長與自進化等功能結構和運行模式的一種制造系統(tǒng)與制造過程。如果說制造過程的機械化、自動化延伸了人類的體力,智能化延伸了人類的智力,那么,"仿生制造"則可以說延伸了人類自身的組織結構和進化過程。
仿生制造所涉及的科學問題是生物的"自組織"機制及其在制造系統(tǒng)中的應用問題。所謂"自組織"是指一個系統(tǒng)在其內(nèi)在機制的驅(qū)動下,在組織結構和運行模式上不斷自我完善、從而提高對于環(huán)境適應能力的過程。仿生制造的"自組織"機制為自下而上的產(chǎn)品并行設計、制造工藝規(guī)程的自動生成、生產(chǎn)系統(tǒng)的動態(tài)重組以及產(chǎn)品和制造系統(tǒng)的自動趨優(yōu)提供了理論基礎和實現(xiàn)條件。
仿生制造屬于制造科學和生命科學的"遠緣雜交",它將對21世紀的制造業(yè)產(chǎn)生巨大的影響。
仿生制造的研究內(nèi)容目前有兩個方面:
2.4.1 面向生命的仿生制造?
研究生命現(xiàn)象的一般規(guī)律和模型,例如人工生命、細胞自動機、生物的信息處理技巧、生物智能、生物型的組織結構和運行模式以及生物的進化和趨優(yōu)機制等;
2.4.2 面向制造的仿生制造?
研究仿生制造系統(tǒng)的自組織機制與方法,例如:基于充分信息共享的仿生設計原理,基于多自律單元協(xié)同的分布式控制和基于進化機制的尋優(yōu)策略;研究仿生制造的概念體系及其基礎,例如:仿生空間的形式化描述及其信息映射關系,仿生系統(tǒng)及其演化過程的復雜度計量方法。
機械仿生與仿生制造是機械科學與生命科學、信息科學、材料科學等學科的高度融合,其研究內(nèi)容包括生長成形工藝、仿生設計和制造系統(tǒng)、智能仿生機械和生物成形制造等。目前所做的研究工作大多屬前沿探索性的工作,具有鮮明的基礎研究的特點,如果抓住機遇研究下去,將可能產(chǎn)生革命性的突破。今后應關注的研究領域有生物加工技術、仿生制造系統(tǒng)、基于快速原型制造技術的組織工程學,以及與生物工程相關的關鍵技術基礎等。?
2.4.3?現(xiàn)代制造技術的發(fā)展趨勢
20世紀90年代以來,世界各國都把制造技術的研究和開發(fā)作為國家的關鍵技術進行優(yōu)先發(fā)展,如美國的先進制造技術計劃AMTP、日本的智能制造技術(IMS)國際合作計劃、韓國的高級現(xiàn)代技術國家計劃(G--7)、德國的制造2000計劃和歐共體的ESPRIT和BRITE-EURAM計劃。
隨著電子、信息等高新技術的不斷發(fā)展,市場需求個性化與多樣化,未來現(xiàn)代制造技術發(fā)展的總趨勢是向精密化、柔性化、網(wǎng)絡化、虛擬化、智能化、綠色集成化、全球化的方向發(fā)展。
當前現(xiàn)代制造技術的發(fā)展趨勢大致有以下九個方面:
(1)?信息技術、管理技術與工藝技術緊密結合,現(xiàn)代制造生產(chǎn)模式會獲得不斷發(fā)展。
(2)?設計技術與手段更現(xiàn)代化。
(3)?成型及制造技術精密化、制造過程實現(xiàn)低能耗。
(4)?新型特種加工方法的形成。
(5)?開發(fā)新一代超精密、超高速制造裝備。
(6)?加工工藝由技藝發(fā)展為工程科學。
(7)?實施無污染綠色制造。
(8)?制造業(yè)中廣泛應用虛擬現(xiàn)實技術。
(9)?制造以人為本。
附錄B
The new development of advanced manufacturing technology
Abstract: This paper presents the contemporary face of manufacturing technology, advanced manufacturing exposition of the frontier science and the prospect of advanced manufacturing technology development prospects.
Keywords: Advanced manufacturing technologies; Forefront of science; Application prospects
Manufacturing is a modern national economy and overall national strength is an important pillar of its GDP accounted for a general national GDP of the 20% "55%. In a national productive capacity of enterprises , the role of manufacturing technology in general accounted for about 60%. Experts believe that every country of the world economic competition, major manufacturing technology competition. its ability to compete in the ultimate embodiment of the production of these products on the market share. Along with economic and technological for the rapid development and the needs of clients and the market environment constantly changing, and this competition is becoming increasingly fierce. Governments therefore attach great importance to the advanced manufacturing technology.
1 Current manufacturing science to solve problems
The current manufacturing science to solve problems mainly concentrated in the following areas :
(1) manufacturing system is a complex large-scale systems, in order to meet the agile manufacturing systems, rapid response and rapid reorganization, must learn from the information science, life sciences and social sciences multidisciplinary research, and explore new manufacturing system architecture, Manufacturing and Manufacturing System effective operational mechanism. Manufacturing System optimization of the organizational structure and excellent operating condition is manufacturing system modeling, simulation and optimization of its main objectives. The new manufacturing system architecture not only for the manufacturing enterprise agility and the ability to respond to the needs and the ability of the reorganization can be of great significance justice, but the bottom right manufacturers of flexible production equipment and dynamic reconfiguration ability of higher demand. Biological concept more and more manufacturers to be introduced into manufacturing systems, manufacturing systems to meet new demands.
(2) To support the rapid agile manufacturing, Geometric knowledge sharing has become the constraints of modern manufacturing technology product development and manufacture of the key issues. For example, in computer-aided design and manufacturing (CAD / CAM) integration, Coordinate Measuring (CMM) and robotics, and so on In reality 3D space (3-Real Space), There are a lot of geometric algorithm design and analysis issues, in particular the geometry, Geometric Computing and reasoning; Surveying and robot path planning and parts Location (Localization). There were C-space (Configuration space Configuration Space) geometry and geometric reasoning; the object operations (Gripper, crawls and assembly, etc.) to describe and multi-fingered robot crawls planning, Motion planning and assembly operations planning is the need to screw space (Screw Space), geometric reasoning . Manufacturing process physics and mechanics of the phenomenon of geometric study of the formation of manufacturing science geometry and geometric reasoning, and other aspects Research topics, pending further theoretical breakthrough present a new discipline -- computer geometry is being increasingly extensive and in-depth study.
(3) In the modern manufacturing process, the information has become not only dominate manufacturing industries decisive factor it is still the most active drivers. Manufacturing System to improve the information processing capacity has become a modern manufacturing development of a scientific focus. Because manufacturing information system and structure of the multilevel nature, manufacturing information access, integration and integration of showing three-dimensional, Information metric multidimensional and multilevel nature of the information. Manufacturing Information in the structural model, manufacturing information consistency constraints, Massive processing and dissemination of data to create knowledge base management, and other aspects that have yet to be a breakthrough.
(4) various artificial intelligence tools and computational intelligence methods in a wide range of manufacturing applications for the manufacture of smart development. A kind of biological evolutionary algorithm based on the computational intelligence tools, including the scheduling problem solving combinatorial optimization technology, the increasingly widespread concern, Manufacturing is expected to complete combinatorial optimization problems at the computing speed and precision for both breakthrough scale of the problem constraints. Intelligent Manufacturing is also reflected in : intelligent scheduling, intelligent design, intelligent processing, robotics, intelligent control, intelligent process planning, Intelligent Diagnosis and other aspects.
These issues are the current product innovation the key theoretical issues, also to create a song by up to a scientific basis for important issues. These breakthroughs in key issues, we can form the basis of product innovation research system.
2 Modern mechanical engineering frontier science
Different intersection between science and fusion will produce new scientific gathering economic development and social progress of science and technology produced new demands and expectations, thus forming a frontier science. Cutting-edge science is resolved and unresolved scientific issues between the boundaries. Cutting-edge science is the obvious time-domain, and the dynamic characteristics of the area. Forefront of the project is different from the general scientific basis of the important characteristics of science is that it covers the practical engineering of the key scientific and technological asked issue.
USM, super-high-speed machining, green design and manufacturing, and other fields at home and abroad have done a lot of research work, However, innovation is the key to mechanical scientific issues yet unclear. Large complex mechanical systems design and performance optimization product innovation design, intelligent structures and systems Intelligent robot and its dynamics, nanotribology, the manufacturing process of three-dimensional numerical simulation and physical simulation, and the ultra-precision processing technology of micro-based, large and super precision equipment design and manufacturing base virtual manufacturing and virtual instruments, nanotechnology and measurement equipment, parallel axis machine tools, micro-electromechanical systems and other areas at home and abroad has been done a lot of research, But there are still many of the key scientific and technical issues to be resolved.
Information science, nano-science, material science, life science, management science and manufacturing science will be changed in the 21st century mainstream science, The resulting high-tech industry and will change the face of the world. Therefore, the above areas is the development of cross-manufacturing systems and manufacturing information science, nano-mechanical and nano-manufacturing science, Bionic bionic manufacturing machinery and science, Manufacturing management science and reconfigurable manufacturing systems is the 21st century mechanical engineering major scientific frontier science.
2.1 Manufacturing science and information science crossover -- Manufacturing Information Science
Electromechanical products in the information on the physical and chemical raw materials. Many modern products, the value is mainly reflected in the value of information. Therefore the manufacturing process access to information and applications is very important. Information is to create science and technology globalization and modernization of the important signs. People on the one hand, manufacturing technology began to explore product design and manufacturing process information essence, on the other hand, manufacturing technology to transform itself in order to make its adapt to the new information-based manufacturing environment. Along with the manufacturing process and create better understanding of the system, researchers are trying to brand new concept and the manner described and expressions to further achieve the control and optimization purposes.
And manufacturing-related information is the main product information, technical information and management information, The following main areas of research and content :
(1) manufacturing information acquisition, processing, storage, transmission and application to a large number of manufacturing information into knowledge and decision-making.
(2) non-symbolic expression of information and create information fidelity transmission, manufacturing information management, Nonholonomic manufacturing information under the production decision, virtual manufacturing management, Web-based environment in the design and manufacture, manufacturing process and manufacturing control system of scientific problems.
These elements are manufacturing science and the scientific base of information integration products, constitutes a manufacturing science of the new branch -- manufacturing information.
2.2 MEMS research and manufacturing technology
Micro-electronic mechanical systems (MEMS), is set micro-sensors, micro actuators and signal processing and control circuits, Interface circuits, communication and power supply in the integrity of integrated micro-electro-mechanical systems. MEMS technology is the goal of the micro-systems, integration is to explore the new theory, the new functional components and systems. MEMS development will greatly promote various products of the pocket, miniaturization, % magnitude of devices and systems to enhance the functional density, the information density and the density of the Internet, significantly saving energy and materials. It will not only reduce the cost of electrical and mechanical systems, and also accomplish many large size mechanical and electrical systems are unable to complete the task. For example, sophisticated 5 μm diameter of micro tweezers can dish a red blood cell; create 3 mm size can activate the car; in the magnetic field can fly like butterflies the size of aircraft. MEMS technology development in the areas of technology and new industries, with many traditional sensors can not compare the advantages So in the manufacturing, aviation, aerospace, transportation, communications, agriculture, biological medicine, environmental monitoring, military, families, and people exposed to almost all areas have a very broad application prospects.
MEMS technology is the mechanical and electronic technology in nano-scale integration of compatible products. As early as in 1959 alone micro-mechanical scientists, as envisaged in a 1962 resolution micro-silicon pressure sensors. 1987 University of California at Berkeley developed a rotor diameter of 60 "120μm silicon micro-electrical static machine, demonstrated using silicon micro-processing technology produced small movable structures and integrated circuits and micro-manufacturing system compatibility potential. MEMS technology can be like the 20th century in the microelectronics technology, in the 21st century of science and technology in the world, economic development and national defense building have a tremendous impact. nearly 10 years, the development of MEMS spectacular. its characteristics are as follows : A considerable number of micro-components (micro-structure of micro-sensors and micro-actuators, etc.) and micro-system success reflect the reality and potential value; a variety of micro-manufacturing technology, particularly semiconductor microfabrication technology has become a micro-system support; MEMS research needs more interdisciplinary team of research, micro-electromechanical systems technology in microelectronics technology developed on the basis of a multidisciplinary cross the frontier research areas, involved in electronic engineering, mechanical engineering, material engineering, physics, chemistry and biomedical engineering, and other technical and scientific.
At present, under conditions of micro-mechanical system of campaign laws, minor component of the physical properties and loads of mechanical behavior such as lack of full understanding, have formed on a certain theoretical foundation of the Micro System Design Theory and Methods, it can only use their experience and test methods for research. Micro-mechanical systems study the key scientific problems with the micro-scale effect, physical characteristics and biochemical characteristics. Micro System is at the eve of a breakthrough, is in dire need of further research fields.
2.3 Preparation of material / parts manufacturing and processing integration of the new technology infrastructure
Material is a milestone in the progress of mankind, those in the manufacturing and high-tech development. Each an important new materials and the preparation of the successful application will promote the material, promote national economic strength and military strength. The 21st century, the world will be consuming resources of the industrial economy to a knowledge-based economy. request materials and components with high performance and functionality, intelligent character; request materials and spare parts of the design to achieve quantitative and digital; request materials and spare parts of the preparation of fast, both efficient and to achieve integration, integration. Materials and spare parts of the digital design and virtual reality simulation and optimization of materials and components to achieve the high quality Preparation / both a manufacturing and body-integrated manufacturing the key. On one hand, to be completed through computer simulation is optimized to reduce material preparation and parts manufacturing process of link, access to the best technology, materials and components to achieve the high quality Preparation / manufacturing; the other hand, According to the different material properties, such as modulus of elasticity, coefficient of thermal expansion, electromagnetic properties, research materials and spare parts of the design of the form. Then the removal of the traditional material-manufacturing technology, materials increase-cladding technology, examine various components of the composite