分 類 號(hào) 密 級(jí) 畢 業(yè) 設(shè) 計(jì) (論 文 )磁懸浮電主軸機(jī)械部分設(shè)計(jì)所 在 學(xué) 院專 業(yè)班 級(jí)姓 名學(xué) 號(hào)指 導(dǎo) 老 師誠(chéng) 信 承 諾我謹(jǐn)在此承諾:本人所寫(xiě)的畢業(yè)論文《磁懸浮電主軸機(jī)械部分設(shè)計(jì)》均系本人獨(dú)立完成,沒(méi)有抄襲行為,凡涉及其他作者的觀點(diǎn)和材料,均作了注釋,若有不實(shí),后果由本人承擔(dān)。承諾人(簽名): 年 月 日I摘 要磁懸浮技術(shù)是將電磁學(xué)、機(jī)械學(xué)、動(dòng)力學(xué)、電子技術(shù)、自動(dòng)控制技術(shù)、傳感技術(shù)、檢測(cè)技術(shù)和計(jì)算機(jī)科學(xué)等高新技術(shù)有機(jī)結(jié)合在一起,成為典型的機(jī)電一體化技術(shù)。磁懸浮技術(shù)是利用磁場(chǎng)力使一物體沿著或繞著某一基準(zhǔn)框架的一軸或者幾軸保持固定位置,由于懸浮體和支撐之間無(wú)任何接觸,克服了由摩擦帶來(lái)的能量消耗和速度限制,具有壽命長(zhǎng),能耗低,安全可靠等優(yōu)點(diǎn)。目前,各國(guó)已廣泛開(kāi)展了對(duì)磁懸浮控制系統(tǒng)的研究隨著控制理論的不斷完善和發(fā)展,采用先進(jìn)的控制方法對(duì)磁懸浮系統(tǒng)進(jìn)行的控制和設(shè)計(jì),使系統(tǒng)具有更好的魯棒性。在我國(guó),磁懸浮技術(shù)研究起步較晚,水平相對(duì)落后。隨著電子技術(shù)的發(fā)展,特別是電子計(jì)算機(jī)的發(fā)展,帶來(lái)了磁懸浮控制系統(tǒng)向智能化方向的快速發(fā)展。近年來(lái),磁懸浮技術(shù)開(kāi)始由宇航、軍事等領(lǐng)域向一般工業(yè)應(yīng)用方面發(fā)展,廣泛應(yīng)用于很多領(lǐng)域,如:磁懸浮列車、磁懸浮隔振器、磁懸浮軸承、高速機(jī)床進(jìn)給平臺(tái)、磁懸浮硬盤(pán)、飛輪電池等。本設(shè)計(jì)主要針對(duì)磁懸浮技術(shù)對(duì)一種磁懸浮主軸進(jìn)行探索與研究.關(guān)鍵詞:磁懸浮技術(shù),電磁學(xué),主軸IIAbstractThe magnetic suspension technique is the electromagnetics, mechanics, dynamics, electronic technology, automatic control technology, sensor technology, detection technology and computer science and high technology are organically combined together, become a typical electromechanical integration technology. The magnetic suspension technique is the use of magnetic field makes an object along or around a reference frame of a shaft or shaft to maintain a fixed position, due to suspension and support between without any contact, overcome by the friction caused by energy consumption and the speed limit, has long service life, low energy consumption, safe and reliable advantages. At present, all countries have been widely carried out in the research on magnetic suspension control system with the control theory of continuous improvement and development, the use of advanced control method for maglev system control and design, the system has better robustness. In our country, magnetic levitation technology research started late, the level is relatively backward.With the development of electronic technology, especially the development of the electronic computer, brings a magnetic levitation control system intelligent direction of the rapid development of. In recent years, magnetic levitation technology started by the aerospace, military and other fields to the general industrial applications development, widely used in many fields, such as: maglev, maglev isolator, magnetic bearings, high-speed machine tool feeding platform, hard disk, the flywheel battery.This article mainly aims at the magnetic suspension technology of a kind of magnetic suspension spindle to explore and research.Key Words: magnetic suspension technique,electromagnetics,suspension spindleIII目 錄摘 要 IABSTRACT.II目 錄 III第 1 章 緒論 11.1 磁懸浮原理及其特點(diǎn) .11.2 磁懸浮技術(shù)應(yīng)用狀況 21.2.1 磁懸浮軸承 21.2.2 磁懸浮列車 21.2.3 磁懸浮工作臺(tái) 31.2.4 磁懸浮隔振器 31.3 磁懸浮軸承的基本原理 51.4 磁懸浮軸承的發(fā)展過(guò)程和未來(lái)的研究方向 6第 2 章 磁懸浮系統(tǒng)介紹 102.1 磁懸浮系統(tǒng)的基本結(jié)構(gòu) .102.3 磁懸浮系統(tǒng)的動(dòng)力學(xué)模型 .102.3.1 剛體運(yùn)動(dòng)方程 102.4 電磁力模型 .112.5 繞組回路的電學(xué)方程 122.6 線性化模型分析 13第 3 章 磁懸浮主軸部分設(shè)計(jì) 163.1 論文的主要工作 .163.2 磁懸浮軸承機(jī)械系統(tǒng)的設(shè)計(jì) 163.2.1 磁懸浮軸承的結(jié)構(gòu)及材料 .163.3 磁懸浮軸承系統(tǒng)的結(jié)構(gòu)布置形式 .173.4 電磁鐵的設(shè)計(jì) 17IV3.5 初始參數(shù)的選擇 .193.6 磁懸浮軸承動(dòng)力學(xué)模型的建立 203.6.1 單自由度轉(zhuǎn)子的數(shù)學(xué)模型 .203.6.2 轉(zhuǎn)子的位移方程 .213.7 徑向磁懸浮電主軸的系統(tǒng)設(shè)計(jì) 22第 4 章 磁懸浮 AMBS24第 5 章 總結(jié)與展望 .29參考文獻(xiàn) .30致 謝 31附錄 .32第 1 章 緒論1第 1 章 緒論1.1 磁懸浮原理及其特點(diǎn)磁懸浮技術(shù)是利用電磁力將物體無(wú)機(jī)械接觸地懸浮起來(lái),該裝置由傳感器、控制器、電磁鐵和功率放大器等部分組成。根據(jù)在磁懸浮系統(tǒng)中實(shí)現(xiàn)穩(wěn)定懸浮的電磁力的狀態(tài)(是靜態(tài)的還是動(dòng)態(tài)的) ,可將磁懸浮系統(tǒng)劃分為無(wú)源(被動(dòng))和有源(可控)兩種懸浮系統(tǒng)。它一般是由懸浮體、傳感器、控制器和執(zhí)行器 4 部分組成。其中,執(zhí)行器包括電磁鐵和功率放大器兩部分。現(xiàn)假設(shè)在某參考位置上,由于懸浮體受到一個(gè)向下的擾動(dòng),它將會(huì)偏離其參考位置。這時(shí),傳感器檢測(cè)出懸浮體偏離參考點(diǎn)的位移,作為控制器的微處理器將檢測(cè)的位移變換成控制信號(hào);功率放大器將這一控制信號(hào)轉(zhuǎn)換成控制電流,控制電流在執(zhí)行磁鐵中產(chǎn)生電磁力,從而驅(qū)動(dòng)懸浮體返回到原來(lái)的平衡位置。因此,不論懸浮體受到的擾動(dòng)是向下還是向上,它始終能處于穩(wěn)定的平衡狀態(tài)磁力彈簧是磁懸浮系統(tǒng)重要的執(zhí)行器元件。根據(jù)產(chǎn)生磁力的方式不同,磁力彈簧可被分為電磁彈簧和永磁彈簧兩種。東南大學(xué)的朱美玲、袁世峰等研究了一種電磁彈簧模型。在此模型中,靜態(tài)力基本上由永磁體產(chǎn)生的力支持,外部擾動(dòng)產(chǎn)生的振動(dòng)則由通電線圈產(chǎn)生的電磁力來(lái)控制。永磁彈簧通常僅由永久磁鐵來(lái)提供磁力,而永久磁鐵常選取稀土類磁性材料。江蘇大學(xué)的錢坤喜、呂利昌等人研制了一種稀土磁力彈簧。南京航空航天大學(xué)的龔余才,對(duì)稀土磁彈簧吸振器的特性進(jìn)行了研究,他介紹了稀土金屬制成的磁彈簧吸振器的構(gòu)造和工作機(jī)理,并分析了磁彈簧剛度的可調(diào)節(jié)性及其剛度與磁彈簧的有關(guān)參數(shù)間的關(guān)系。由于磁懸浮不存在機(jī)械接觸,因此具有下列優(yōu)點(diǎn):一是完全無(wú)磨損、無(wú)污染,可在真空和腐蝕性介質(zhì)中長(zhǎng)期使用;二是完全無(wú)機(jī)械摩擦,功耗小、噪聲低、效率高,不需潤(rùn)滑和密封,可用于高速工程,解決高速機(jī)械設(shè)計(jì)中潤(rùn)滑和能耗的問(wèn)題。對(duì)于有源式磁懸浮系統(tǒng),可以控制其剛度、阻尼的大小,使其與外界干擾頻率相適應(yīng),從而保持懸浮物體處于平衡狀態(tài),便于振動(dòng)的主動(dòng)控制。此外,對(duì)于有源式磁懸浮系統(tǒng),其懸浮物體的全部運(yùn)動(dòng)特性可由位置傳感器測(cè)得,便于實(shí)現(xiàn)運(yùn)行狀態(tài)診斷和監(jiān)測(cè)。21.2 磁懸浮技術(shù)應(yīng)用狀況1.2.1 磁懸浮軸承磁懸浮軸承與磁懸浮列車是目前國(guó)內(nèi)外研究較多的兩類磁懸浮技術(shù)產(chǎn)品;而在國(guó)外,目前磁懸浮軸承已經(jīng)開(kāi)始進(jìn)入工業(yè)應(yīng)用階段。我國(guó)從 20 世紀(jì) 80 年代開(kāi)始研究磁懸浮軸承技術(shù),現(xiàn)已取得了一定的研究成果。傳統(tǒng)的磁懸浮軸承需要 5 個(gè)或 10 個(gè)非接觸式位置傳感器來(lái)檢測(cè)轉(zhuǎn)子的位移。由于傳感器的存在,使磁懸浮軸承系統(tǒng)的軸向尺寸變大、系統(tǒng)的動(dòng)態(tài)性能降低,而且成本高、可靠性低。由于受結(jié)構(gòu)的限制,傳感器不能裝在磁懸浮軸承的中間,使系統(tǒng)的控制方程相互耦合,導(dǎo)致控制器設(shè)計(jì)更為復(fù)雜。此外,由于傳感器的價(jià)格較高,導(dǎo)致磁懸浮軸承的售價(jià)很高,這大大限制了它在工業(yè)上的推廣應(yīng)用。因此,如何降低磁懸浮軸承的價(jià)格,一直是國(guó)際上的熱點(diǎn)研究課題。近幾年,結(jié)合磁懸浮軸承和無(wú)傳感器檢測(cè)兩大研究領(lǐng)域的最新研究成果,誕生了一個(gè)全新的研究方向,即無(wú)傳感器的磁懸浮軸承。它不需要設(shè)專門的位移傳感器,轉(zhuǎn)子的位移是根據(jù)電磁線圈上的電流和電壓信號(hào)而得到的。這類磁懸浮軸承將使轉(zhuǎn)子的軸向尺寸變小、系統(tǒng)的動(dòng)態(tài)性能和磁懸浮軸承的可靠性得到提高;這樣磁懸浮軸承的控制器將便于設(shè)計(jì),價(jià)格也會(huì)顯著下降。1.2.2 磁懸浮列車對(duì)于磁懸浮列車的研究由來(lái)已久,其依靠電磁吸力或電磁斥力將列車懸浮于空中并進(jìn)行導(dǎo)向,實(shí)現(xiàn)列車與地面軌道間的無(wú)機(jī)械接觸。按懸浮方式,磁懸浮列車可被分為常導(dǎo)磁吸型和超導(dǎo)排斥型兩類。以德國(guó)高速常導(dǎo)磁懸浮列車 TransRapid 為代表的常導(dǎo)磁吸型利用普通直流電磁鐵電磁吸力的原理,由車上常導(dǎo)電流產(chǎn)生電磁引力,吸引軌道下的導(dǎo)磁體,使列車浮起。以日本 MagLev 為代表的超導(dǎo)排斥型磁懸浮列車,利用超導(dǎo)磁體產(chǎn)生的強(qiáng)磁場(chǎng)在列車運(yùn)行時(shí)與布置在地面上的線圈相互作用,產(chǎn)生電動(dòng)斥力將列車浮起,其懸浮氣隙較大,技術(shù)相當(dāng)復(fù)雜,并需屏蔽發(fā)散的電磁場(chǎng)。目前,在世界磁懸浮列車技術(shù)領(lǐng)域中,日本和德國(guó)占據(jù)領(lǐng)先地位。我國(guó)磁懸浮列車研究始于 20 世紀(jì) 80 年代,雖然起步晚,但發(fā)展很快。上海的磁懸浮列車項(xiàng)目是世界上第一條投入商業(yè)化運(yùn)營(yíng)的高速磁浮線路,并于 2002 年 12 月 31 日成功實(shí)現(xiàn)了單線通車試運(yùn)行。第 1 章 緒論31.2.3 磁懸浮工作臺(tái)隨著對(duì)加工和測(cè)量裝備精度要求的不斷提高,有關(guān)長(zhǎng)行程、超精密運(yùn)動(dòng)控制的研究引起了人們?cè)絹?lái)越多的興趣。已有研究表明,影響長(zhǎng)行程、超精密運(yùn)動(dòng)控制精度的最主要因素是摩擦力非線性。而磁懸浮正是一種實(shí)現(xiàn)長(zhǎng)行程、超精密運(yùn)動(dòng)控制的較為理想的方式。磁懸浮工作臺(tái)的關(guān)鍵技術(shù)之一是電磁鐵的結(jié)構(gòu)和參數(shù)。由于只能使用電磁鐵的吸引力,因此在工作臺(tái)的上方必須有電磁鐵以平衡重力。一方面,在一定程度上會(huì)影響工作臺(tái)臺(tái)面上工件的安放,這一問(wèn)題只能通過(guò)將電磁鐵的尺寸設(shè)計(jì)得盡量小而得到解決;另一方面,電磁鐵會(huì)有明顯的靜態(tài)功耗(銅損) ,由此而產(chǎn)生的熱量對(duì)精密系統(tǒng)的指標(biāo)通常會(huì)造成嚴(yán)重的影響。要降低靜態(tài)功耗,則設(shè)計(jì)又需要將電磁鐵及其繞組的尺寸盡量加大。這兩個(gè)相互矛盾的要求是磁懸浮工作臺(tái)設(shè)計(jì)的主要問(wèn)題之一。針對(duì)此問(wèn)題,西安交通大學(xué)的毛軍紅、李黎川等人提出了采用三磁極電磁鐵的超精密磁懸浮工作臺(tái)。通過(guò)與常規(guī)的采用雙磁極電磁鐵的磁懸浮工作臺(tái)的比較顯示,采用三磁極電磁鐵的超精密磁懸浮工作臺(tái)可使靜態(tài)功耗(或發(fā)熱量)降低 50%,且具有更合理的空間結(jié)構(gòu)。1.2.4 磁懸浮隔振器由于磁懸浮隔振器的磁場(chǎng)力大小與兩個(gè)極板之間的距離呈非線性關(guān)系,從而使得磁懸浮隔振具有良好的非線性隔振性能。中國(guó)科學(xué)院力學(xué)研究所的崔瑞意、申仲翰等人研制了一種磁懸浮隔振裝置。該隔振裝置的外觀大致呈圓柱形,圓柱的中心部分裝有磁性材料,上、下兩端可分別與振體和基礎(chǔ)相聯(lián)接。在設(shè)計(jì)過(guò)程中,應(yīng)考慮摩擦、運(yùn)動(dòng)軌跡的約及穩(wěn)定性等諸方面的因素。國(guó)防科技大學(xué)的龍志強(qiáng)、尹力明等人共同設(shè)計(jì)研究了一種磁懸浮隔振系統(tǒng)。在建立隔振系統(tǒng)動(dòng)力學(xué)模型的基礎(chǔ)上,分析了隔振系統(tǒng)的基本特性,并提出了應(yīng)用加速度反饋來(lái)壓低系統(tǒng)頻帶的方法。韓國(guó)的 Y-B Kim、W-G Hwang 等研究了一種使用電磁減振器的主動(dòng)振動(dòng)控制懸架系統(tǒng)。通過(guò)對(duì)縮小模型的試驗(yàn)分析表明,此電磁減振系統(tǒng)在各種激勵(lì)輸入下均具有良好的減振效果;但由于不能獲得足夠大的放大器電流以及散熱問(wèn)題,使得其實(shí)際應(yīng)用受到了限制。日本的藤田悅則、川崎誠(chéng)司等提出了一種磁懸浮減振機(jī)構(gòu)并獲得國(guó)家專利。此減振機(jī)構(gòu)利用至少兩個(gè)永久磁鐵構(gòu)成排斥型磁性彈簧,通過(guò)適當(dāng)選擇一個(gè)永久磁鐵相對(duì)于另一個(gè)的運(yùn)動(dòng)軌跡,使磁性彈簧內(nèi)的存儲(chǔ)磁能近似4一定,從而設(shè)定彈簧常數(shù)值近似為零。此外,磁懸浮技術(shù)在半導(dǎo)體制造業(yè),鋼鐵制造業(yè)和汽車制造業(yè)等大規(guī)模工業(yè)中也已開(kāi)始應(yīng)用。可以預(yù)期,隨著磁懸浮技術(shù)的不斷普及,更多的應(yīng)用產(chǎn)品將會(huì)不斷地出現(xiàn)?,F(xiàn)代機(jī)械工程都在朝著信息化、自動(dòng)化、智能化發(fā)展,近幾十年的發(fā)展表明,在現(xiàn)代機(jī)械工程領(lǐng)域里,幾乎所有有生命力、有發(fā)展前途、有較大影響的新技術(shù)、新工藝和新生科研方向都集中在機(jī)電一體化(mechantronics)領(lǐng)域。和傳統(tǒng)機(jī)械相比,機(jī)電一體化機(jī)械主要增添了傳感器(sensor)和控制器(controller)兩大部分,它不僅能感受環(huán)境的變化,而且還能根據(jù)控制程序?qū)Υ俗龀龇磻?yīng),具有類似于人的功能。磁懸浮軸承(magnetic bearing)就是機(jī)電一體化機(jī)械的典型產(chǎn)品,是現(xiàn)代高技術(shù)的結(jié)晶。磁懸浮軸承是一種利用電磁場(chǎng)力將轉(zhuǎn)子懸浮于空間,不需要任何介質(zhì)而實(shí)現(xiàn)承載的非接觸式支承裝置,與傳統(tǒng)的滾動(dòng)軸承和滑動(dòng)軸承相比,磁懸浮軸承明顯的特點(diǎn)在于沒(méi)有機(jī)械接觸,不需要傳力介質(zhì),而且其支承力可控。因此而具有傳統(tǒng)軸承無(wú)法比擬的優(yōu)越性:由于沒(méi)有機(jī)械摩擦和磨損,所以降低了工作能耗和噪聲,延長(zhǎng)了使用壽命;動(dòng)力損失小,便于應(yīng)用在高速運(yùn)動(dòng)場(chǎng)合;由于不需要潤(rùn)滑和密封系統(tǒng),排除了污染,可用于真空超凈,腐蝕性介質(zhì)以及極端溫度和壓力等特殊工作環(huán)境;具有良好的轉(zhuǎn)子動(dòng)力學(xué)特性。軸承是機(jī)電工業(yè)的基礎(chǔ)產(chǎn)業(yè)之一,其性能的好壞直接影響到機(jī)電產(chǎn)品(如超高速超精密加工機(jī)床)的科技含量及其在國(guó)際上的競(jìng)爭(zhēng)力。由于磁懸浮軸承具有一系列的優(yōu)良品質(zhì),從根本上改變了傳統(tǒng)的支承形式,它在航空航天、能源交通、機(jī)械工程、機(jī)器人等高技術(shù)領(lǐng)域具有廣泛的應(yīng)用前景。磁懸浮軸承的種類很多,按照懸浮磁場(chǎng)的不同,可分為以下幾類:(1)按磁場(chǎng)力的來(lái)源分為永久磁鐵型、電磁鐵和永久磁鐵混合型以及純電磁鐵型;(2)按磁場(chǎng)力是否受控可以分為被動(dòng)型和主動(dòng)型;(3)按磁場(chǎng)力類型可以分為吸力型和斥力型。目前,常用的是主動(dòng)磁懸浮軸承(AMB) ,利用轉(zhuǎn)子上的電磁線圈與轉(zhuǎn)子上的鐵磁材料之間的吸力實(shí)現(xiàn)支承。磁懸浮軸承的特點(diǎn):第 1 章 緒論5這種新型轉(zhuǎn)子支撐件有如下突出優(yōu)點(diǎn):(1)回轉(zhuǎn)速度高,磁懸浮軸承的轉(zhuǎn)速只受轉(zhuǎn)子鐵磁材料的限制,最大線速度可達(dá)200m/s;(2)無(wú)磨損,功耗低;(3)無(wú)需潤(rùn)滑和密封系統(tǒng),適用多種工作環(huán)境,而且對(duì)環(huán)境溫度不敏感;(4)具有自動(dòng)平衡性,可使轉(zhuǎn)子系統(tǒng)自身的慣性軸回轉(zhuǎn),從而消除了不平衡力,使機(jī)身的震動(dòng)大大降低。磁懸浮軸承的主要缺點(diǎn)是:剛性較滾動(dòng)軸承小,必須使用控制器;純電磁鐵型體積和重量均較大,應(yīng)急情況下應(yīng)變能力弱,因而大多數(shù)系統(tǒng)配備了輔助軸承,以致結(jié)構(gòu)復(fù)雜。此外,其價(jià)格較貴,系統(tǒng)構(gòu)成復(fù)雜,用戶缺乏有關(guān)磁懸浮軸承的基本知識(shí),這在很大程度上阻礙了磁懸浮軸承的推廣和應(yīng)用。但是,隨著我國(guó)科技的發(fā)展,制造技術(shù)的進(jìn)步,技術(shù)工人整體素質(zhì)的不斷提高,磁懸浮軸承必將在越來(lái)越多的領(lǐng)域發(fā)揮作用。1.3 磁懸浮軸承的基本原理 磁懸浮軸承從原理上可分為兩種,一種是主動(dòng)磁懸浮軸承(active magnetic bearing) ,簡(jiǎn)稱 AMB;另一種是被動(dòng)磁懸浮軸承(passive magnetic bearing) ,簡(jiǎn)稱PMB。由于前者具有較好的性能,它在工業(yè)上得到了越來(lái)越廣泛的應(yīng)用。這里介紹的是主動(dòng)磁懸浮軸承。磁懸浮軸承系統(tǒng)主要由被懸浮物體(以下稱為轉(zhuǎn)子(rotor))、傳感器、控制器和執(zhí)行器(actuator)四大部分組成。其中執(zhí)行器包括電磁鐵和功率放大器兩部分。下圖是一個(gè)簡(jiǎn)單的磁懸浮軸承系統(tǒng),電磁鐵繞組上的電流為 I,它對(duì)被懸浮物體產(chǎn)生的吸力和被懸浮物體本身的重力 mg 相平衡,被懸浮物體處于懸浮的平衡位置,這個(gè)位置也稱為參考位置。假設(shè)在參考位置上,被懸浮物體受到一個(gè)向下的擾動(dòng),它就會(huì)偏離其參考位置向下運(yùn)動(dòng),此時(shí)傳感器檢測(cè)出被懸浮物體偏離其參考位置的位移,控制器將這一位移信號(hào)變換成控制信號(hào),功率放大器使流過(guò)電磁繞組上的電流變大,因此,電磁鐵的吸力也變大了,從而驅(qū)動(dòng)被懸浮物體返回到原來(lái)的平衡位置。如果被懸浮物體受到一個(gè)相上的擾動(dòng)并向上運(yùn)動(dòng),此時(shí)控制器和功率放大器使流過(guò)電磁場(chǎng)鐵繞組上的電流變小,因此,電磁鐵的吸力也變小了,被懸浮物體也能返回到原來(lái)的平衡位置。因此,不論被懸浮物體受到向上或向下的擾動(dòng),下圖 1-1 中的球狀被懸浮物體始終能處于穩(wěn)6定的平衡狀態(tài)。圖 1-1 磁懸浮軸承工作原理圖1.4 磁懸浮軸承的發(fā)展過(guò)程和未來(lái)的研究方向利用磁力將物體無(wú)接觸地懸浮于空間,并不是一個(gè)新概念,早在一百五十多年前,英國(guó)物理學(xué)家 Earnshow 就提出了磁懸浮的概念,他證明:?jiǎn)慰坑谰么盆F是不能將一個(gè)鐵磁體在所有六個(gè)自由度上都保持自由穩(wěn)定的懸浮狀態(tài)。然而,真正意義上的磁懸浮研究是從 20 世紀(jì)初利用電磁相吸原理的磁懸浮車輛的研究開(kāi)始的。1937 年,肯珀(Kenper)申請(qǐng)了一項(xiàng)有關(guān)主動(dòng)磁懸浮支承的專利。他認(rèn)為要使鐵磁體實(shí)現(xiàn)穩(wěn)定的磁懸浮,必須根據(jù)物體的懸浮狀態(tài)不斷地調(diào)節(jié)磁場(chǎng)力的大小,即采用可控電磁鐵才能實(shí)現(xiàn),這一思想成為發(fā)展磁懸浮列車和磁懸浮軸承研究的主導(dǎo)思想。與此同時(shí),美國(guó) Virginia 大學(xué)的 Beams 和 Holmes 也對(duì)磁懸浮理論進(jìn)行了研究,他們采用電磁懸浮技術(shù)懸浮小鋼球,并通過(guò)鋼球高速旋轉(zhuǎn)時(shí)能承受的離心力來(lái)測(cè)驗(yàn)試驗(yàn)材料的強(qiáng)度,這可能是世界上最早采用磁懸浮技術(shù)支撐旋轉(zhuǎn)體的應(yīng)用實(shí)例。從此主動(dòng)磁懸浮技術(shù)的發(fā)展進(jìn)入了工程應(yīng)用階段的研究,并逐漸形成了磁懸浮列車和磁懸浮軸承兩個(gè)主要的研究方向。在磁懸浮列車方面:到了 60 年代,英國(guó)、日本和德國(guó)根據(jù)不同的設(shè)計(jì)方案,分別制造出了磁懸浮列車的樣機(jī)。德國(guó)對(duì)主動(dòng)磁懸浮技術(shù)的研究主要集中在電磁型(Electro Magnetic System ,簡(jiǎn)稱 EMS 型,也稱吸力型、常導(dǎo)型)磁懸浮列車上。1977 年,德國(guó)航空公司研制成功的 KOMET 磁浮列車,在一段專門試驗(yàn)的軌道上進(jìn)行了運(yùn)行試驗(yàn),時(shí)速高達(dá) 360 公里,這是磁懸浮列車發(fā)展的第一個(gè)里程碑。日本主要集中于電動(dòng)型(Electro Dynamic System,簡(jiǎn)稱 EDS 型,也稱斥力型、超導(dǎo)型)磁懸浮列車的研究與開(kāi)發(fā)工作。日本國(guó)鐵公司 1972 年研制成功的 ML100 型是世界上第一臺(tái) EDS 型磁浮列車;1979 年又研制成功 ML500 型,時(shí)速高達(dá) 517 公里,堪稱陸上交通工具的世第 1 章 緒論7界記錄。與此同時(shí),磁懸浮技術(shù)在軸承領(lǐng)域的應(yīng)用也取得了驚人的成績(jī):上世紀(jì)四十年代,美國(guó) Virginia 大學(xué)的 J . W. Beams 最早研制出離心機(jī)用混合磁懸浮軸承。1976 年,法國(guó) SEP 公司與瑞典 SKF 軸承公司聯(lián)合投資成立了 S2M 公司,對(duì)超高速超精密加工機(jī)床用的磁浮軸承進(jìn)行了系統(tǒng)的研究和開(kāi)發(fā)。1977 年,該公司開(kāi)發(fā)了世界第一臺(tái)高速機(jī)床的磁主軸。1981 年在 Hanover 歐洲國(guó)際機(jī)床展覽會(huì)上,首次推出了 B20/500 磁主軸系統(tǒng),并在 3500r/min 速度下進(jìn)行了鉆、銑現(xiàn)場(chǎng)表演,其高速、高精度、高效、低能耗的優(yōu)良性能引起了各國(guó)專家的極大關(guān)注。此后, S2M 公司在日本和美國(guó)相繼建立了一家分公司。近十幾年來(lái),該公司已開(kāi)發(fā)了 30 多個(gè)品種數(shù)百套磁浮軸承用于各類機(jī)床。1988 年,瑞士 IBAG 公司與瑞士聯(lián)邦工業(yè)大學(xué)合作,開(kāi)發(fā)了高速銑床用的磁浮軸承系統(tǒng),并成立了專門研制、開(kāi)發(fā)、制造磁浮軸承的企業(yè)—Mecos 公司。目前,S2M 和Mecos 已成為世界上著名的生產(chǎn)磁浮軸承的專業(yè)公司。此外,磁浮軸承在離心壓縮機(jī)、分子渦輪表 1-1 國(guó)外部分使用磁懸浮軸承的機(jī)床簡(jiǎn)介公司名稱 機(jī)床類別最高轉(zhuǎn)速 r/min最大功率 kwS2M 鉆、銑、磨 60000 22.0S2M 磨 120000 3.5S2M 磨 180000 1.0IBAG 銑 40000 40.0精工公司 磨 40000 12.0泵、儲(chǔ)能飛輪、離心干燥機(jī)、汽輪發(fā)電機(jī)等大型設(shè)備也得到了越來(lái)越廣泛的應(yīng)用。目前,德國(guó)的 GMN 滾動(dòng)軸承公司、日本的精工精機(jī)、東洋軸承株式會(huì)社和光洋精工等廠家都在從事這種高技術(shù)產(chǎn)品的研究與開(kāi)發(fā)。表 1 是國(guó)外部分使用磁浮軸承的機(jī)床。在航空領(lǐng)域,1997 年前后,美國(guó)德雷伯實(shí)驗(yàn)室( Draper Laboratory)報(bào)道了一系列有關(guān)航空發(fā)動(dòng)機(jī)用的高溫磁懸浮軸承的研究成果,他們成功地研制了能夠在 519°C高溫下工作的磁懸浮軸承系統(tǒng),轉(zhuǎn)速為 22000(r/min),軸承的 Dn 值高達(dá)4.5×106(r-mm/min),研制的高溫磁懸浮軸承在單軸發(fā)動(dòng)機(jī)的模型轉(zhuǎn)子上成功地進(jìn)行8了試驗(yàn)。美國(guó)另一家 Synchrony 公司的研究人員研制出了能在 570℃高溫下工作的磁懸浮軸承系統(tǒng),采用了硬件冗余技術(shù),大大提高了高溫磁懸浮軸承的安全性和可靠性。美國(guó)的 GE 公司和 NASA Lewis 研究中心在近幾年也成功地研制出了高溫磁懸浮軸承;美國(guó)普惠公司在 XTC—65 發(fā)動(dòng)機(jī)的驗(yàn)證機(jī)上采用了磁懸浮軸承,已通過(guò)了 100 小時(shí)的試驗(yàn),日本的 Ebara 公司研制的高溫磁懸浮軸承在 410℃下,連續(xù)、安全運(yùn)行了 2500小時(shí),這是迄今為止世界上連續(xù)工作時(shí)間最長(zhǎng)的高溫磁懸浮軸承系統(tǒng)。面對(duì)美國(guó)的超前研究,并基于保持歐洲的空中優(yōu)勢(shì)和安全,經(jīng)過(guò)緊急磋商后,1997 年 12 月,歐共體組成了一個(gè)由 5 個(gè)工業(yè)發(fā)達(dá)國(guó)家(英國(guó)、德國(guó)、法國(guó)、奧地利和瑞士)參加的聯(lián)合艦隊(duì),制定了 3 年的 AMBI(Active Magnetic Bearings in Aircraft Turbo—machinery)研究計(jì)劃,該計(jì)劃從 1998 年 4 月正式啟動(dòng),具體的參加單位來(lái)自上述 5 個(gè)國(guó)家的 3 所大學(xué)、3 個(gè)發(fā)動(dòng)機(jī)公司和 l 家磁懸浮軸承公司,該計(jì)劃的目的就是要和美國(guó)爭(zhēng)奪這個(gè)高技術(shù)領(lǐng)域的制高點(diǎn),期望率先研制出用磁懸浮軸承支承的新一代航空發(fā)動(dòng)機(jī),搶占 21世紀(jì)的航空市場(chǎng),保持歐洲的空中優(yōu)勢(shì)。國(guó)內(nèi)在主動(dòng)磁懸浮技術(shù)方面的研究起步較晚。民用方面首先是在 1986 年,廣州機(jī)床研究所與哈爾濱工業(yè)大學(xué)對(duì)“磁力軸承的開(kāi)發(fā)及其在 FMS 中的應(yīng)用”這一課題進(jìn)行了研究。上世紀(jì) 80 年代末期才正式啟動(dòng)磁浮列車的研究項(xiàng)目,研究工作主要由國(guó)防科技大學(xué)和西南交通大學(xué)等有關(guān)單位承擔(dān)。1996 年,我國(guó)第一臺(tái) 4 噸載人 EMS 型磁浮列車及其線路研制成功,懸浮高度為 8mm 在 43m 長(zhǎng)導(dǎo)軌上。這標(biāo)志著我國(guó)掌握了磁浮列車的關(guān)鍵技術(shù)。世界上第一條磁懸浮列車線路也已于本世紀(jì)初在我國(guó)上海市投入運(yùn)營(yíng)。與此同時(shí),國(guó)內(nèi)也有不少大專院校和單位在做主動(dòng)磁懸浮軸承技術(shù)方面的應(yīng)用研究,清華大學(xué)、西安交通大學(xué)、國(guó)防科技大學(xué)、哈爾濱工業(yè)大學(xué)、南京航空航天大學(xué)、西安理工大學(xué)等多家單位。不過(guò),目前我國(guó)的主動(dòng)磁懸浮軸承還處于實(shí)驗(yàn)室研究階段,將主動(dòng)磁懸浮軸承技術(shù)真正用于工業(yè)實(shí)際,在國(guó)內(nèi)可能尚無(wú)先例。目前,國(guó)際上對(duì)磁懸浮軸承的研究工作和學(xué)術(shù)氣氛相當(dāng)活躍,1988 年,在瑞士蘇黎世召開(kāi)了第一屆“國(guó)際磁懸浮軸承會(huì)議(International Symposium on Magnetic Bearings) ”,此后,該會(huì)議每?jī)赡暾匍_(kāi)一次,每次會(huì)議都有大量關(guān)于磁懸浮軸承研究的論文發(fā)表,極大推動(dòng)了磁懸浮軸承應(yīng)用的研究。美國(guó)于 1991 年召開(kāi)了“磁懸浮技術(shù)在航天中的應(yīng)用(Aerospace Application of Magnetic Suspension Technology) ”的學(xué)術(shù)研討會(huì),此后,也是每?jī)赡暾匍_(kāi)一次。此外,美國(guó)、法國(guó)、瑞士、日本和我國(guó)第 1 章 緒論9都在大力支持開(kāi)展磁懸浮軸承的研究和應(yīng)用工作,國(guó)際上的這些努力大大推動(dòng)了磁懸浮軸承在工業(yè)上的廣泛應(yīng)用。今后,磁懸浮軸承的發(fā)展趨勢(shì)主要集中在以下幾個(gè)方面:混合磁懸浮軸承(Hybrid Magnetic Bearing ,簡(jiǎn)稱 HMB)是永久磁鐵提供偏置力,以電磁鐵提供開(kāi)展力的一種磁懸浮軸承,其電磁線圈不需要偏置電流,因而能明顯降低鐵心損耗和功率放大器的損耗,也有利于減小功放、電磁鐵的體積和重量,在航空航天領(lǐng)域,具有明顯的優(yōu)點(diǎn);無(wú)傳感器磁懸浮軸承(Sensorless AMB) ,它不需要通常的磁懸浮軸承所必需的傳感器,因而能節(jié)省成本,減小體積、減少引線、提高系統(tǒng)的可靠性,也有利于縮短轉(zhuǎn)子、提高臨界轉(zhuǎn)速、提高靜態(tài)承載能力;隨著材料科學(xué)的發(fā)展,新材料的研制成功使磁懸浮軸承突破了一些限制,近年來(lái),粉末制成的鐵磁材料,使渦流損失大大降低;稀土永磁材料也因結(jié)構(gòu)輕巧,能耗低而極具有應(yīng)用前途;超導(dǎo)磁懸浮軸承的研究也取得了進(jìn)步,利用超導(dǎo)材料可以直接實(shí)現(xiàn)穩(wěn)定懸浮,而不必加主動(dòng)控制,但現(xiàn)階段超導(dǎo)磁懸浮軸承還處于試驗(yàn)階段,主要受兩個(gè)方面的制約:需要低溫環(huán)境和高剛度實(shí)現(xiàn)困難??梢灶A(yù)計(jì),一旦超導(dǎo)材料的研究有了突破性進(jìn)展,必將給磁懸浮技術(shù)帶來(lái)新的概念和巨大的突破。10第 2 章 磁懸浮系統(tǒng)介紹2.1 磁懸浮系統(tǒng)的基本結(jié)構(gòu)磁懸浮控制系統(tǒng)主要由鐵心、線圈、傳感器、控制器、功率放大器及其控制對(duì)象剛體等元件組成。系統(tǒng)結(jié)構(gòu)如圖 2-1 所示。圖 2-1 磁懸浮系統(tǒng)結(jié)構(gòu)圖2.2 磁懸浮系統(tǒng)的工作原理磁懸浮系統(tǒng)是利用電磁力來(lái)控制剛體懸浮的空間位置。其工作原理是控制電磁鐵繞組的電流,產(chǎn)生與剛體重量等價(jià)的電磁力,使得剛體穩(wěn)定懸浮在平衡位置。由于電磁力與懸浮氣隙間存在非線性反比關(guān)系,這種平衡并不穩(wěn)定,一旦受到外界干擾(如電壓脈動(dòng)或者風(fēng)) ,剛體就會(huì)掉下來(lái)或被吸上去,因此必須實(shí)行閉環(huán)控制。采用位置傳感器在線獲取剛體位置信號(hào),控制器對(duì)位移信號(hào)進(jìn)行處理產(chǎn)生控制信號(hào),功率放大器根據(jù)控制信號(hào)產(chǎn)生所需電流并送往電磁鐵,電磁鐵產(chǎn)生相應(yīng)磁力克服重力使得剛體穩(wěn)定在平衡點(diǎn)附近。當(dāng)剛體受到干擾向下運(yùn)動(dòng)時(shí),剛體與電磁鐵的距離增大,傳感器所敏感的光強(qiáng)增大,其輸出電壓增大,經(jīng)過(guò)功率放大器處理后,使得電磁鐵控制繞組的控制電流增大,電磁力增大,剛體被吸回平衡位置。反之亦然。2.3 磁懸浮系統(tǒng)的動(dòng)力學(xué)模型2.3.1 剛體運(yùn)動(dòng)方程剛體受力情況如圖 2-2 所示,圖中 表示剛體所受得重力, 表示線圈通電mg(,)Fix時(shí)剛體所受的電磁力, 表示系統(tǒng)所受的干擾力, 表示剛體與參考平面的距離,()dft ()t?表示電磁鐵與參考平面的距離, 表示電磁鐵與剛體之間的距離,取向上為正。0()t?()xt第 2 章 磁懸浮系統(tǒng)介紹11電磁鐵f ( x , t )m gx ( t )參考平面?0t?圖 2-2 剛體受力示意圖根據(jù)牛頓第二定律,可得剛體的運(yùn)動(dòng)方程:(2-1)2d(),)()dxtmFimgft??2.4 電磁力模型電磁鐵與剛體構(gòu)成磁路,磁路的磁阻主要集中在兩者間的氣隙上,其中有效氣隙磁阻可表示為(2-2)02()xRS??式中 為空氣的導(dǎo)磁率, ;S 為電磁鐵的極面積;x 為導(dǎo)軌與0?7041/Hm????磁極表面的瞬時(shí)間隙。由磁路的基爾霍夫定理可知(2-3)(,)NixR??式中 N 為電磁鐵線圈匝數(shù),i 為電磁繞組中的瞬時(shí)電流, 為鐵心磁通。(,)ix將式(2-2 )代入式(2-3 ) ,可得鐵心磁通為(2-4)0(,)2SNiix???當(dāng)電磁鐵工作在非飽和狀態(tài)時(shí),電磁鐵的磁鏈(2-5)20(,)(,)Siixix???12另外,電磁力可由與它磁場(chǎng)同能量的關(guān)系表示為(2-6)(,)(,)cWixFi??式中 為磁能能量,并且(,)cWix(2-7)0(,)(,)dtcixt???將式(2.5)代入式(2.7) ,再代入式(2.6) ,可得電磁力為(2-8)2020()4,)()SNiixFi x????令 ,則有204SNk??(2-9)2(,)(iFixk?由式子(2-9 )可知,電磁吸引力 F 與氣隙 x 成非線性的反比關(guān)系,這正是磁懸浮系統(tǒng)不穩(wěn)定的根源。2.5 繞組回路的電學(xué)方程根據(jù)電磁感應(yīng)定律,可知電磁鐵繞組回路的電壓 與電流 的關(guān)系為ui(2-10)d[(,)]uRiiLixtt????式中 為繞組中的瞬時(shí)電感,可表示為(,)Lix(2-11)(,)(,)NixLi??將式(2-4 )代入式(2-11)可得(2-12)20(,)SLix??再將式(2-12)代入式(2-10) ,可得電學(xué)方程為第 2 章 磁懸浮系統(tǒng)介紹13(2-13)2200SNiiuRi xx????????由上可知,磁懸浮系統(tǒng)垂直運(yùn)動(dòng)的動(dòng)力學(xué)方程由下列數(shù)學(xué)方程描述:2d(),)()dxtmFimgft??2200SNiuRiixx??????20(,)()4Fi?及邊界條件(2-14)2000(,)()SNimgixx?2.6 線性化模型分析將電磁力 在平衡點(diǎn) 附近進(jìn)行泰勒展開(kāi),并忽略高階項(xiàng)得:(,)Fix0(,)ix0000(,)(,)i xFxiFi?????= 0(,)ixixk= (2-15)0(,)(()ixktt?式(2-15 )中 表示在平衡點(diǎn)處(氣隙為 、電流為 )剛體的電磁力;系數(shù)0(,)Fix00i表示電流變化單位量時(shí)電磁力變化的值, 表示氣隙變化單位長(zhǎng)度時(shí)電磁力變化的ik xk值,由式(2-8)可得(2-16)20iSNix??(2-17)203xik?在電磁鐵繞組中,電壓 的變化 為u?0()()utt???=220000d()()d))NSiNSitxRi Rixtt t????????14=2200d()d()NSSiitxRitxt??????= (2-18)0L?式(2-18 )中 表示平衡點(diǎn)的電感,0(2-19)20SNLx??(2-20)20xi由式(2-1 ) 、 (2-14 ) 、 (2-15 )和式(2-18 )可得(2-21)0()()ixdxmkftutRLi?????????取狀態(tài)變量為 ,則由式(2-21)可得磁懸浮系統(tǒng)的線性化狀態(tài)方程[,]xi??(2-22)00011()()1xi dxkutftmmiLRL???????????? ????????????????????(2-23)??1xyi?????????對(duì)應(yīng)的系統(tǒng)框圖如圖 2-3 所示。()ut?01L??0xL0RLik1mxk??+-++x???()dft-?第 2 章 磁懸浮系統(tǒng)介紹15圖 2-3 線性系統(tǒng)的結(jié)構(gòu)框圖對(duì)方程組(2-21)做拉氏變換,可得懸浮氣隙位置 和輸入電壓 之間的傳遞函x?u數(shù)(2-24)()xsu??032ixkmLRS??系統(tǒng)的特征方程為:(2-25)3200xkRSLm=由勞斯判據(jù)知,系統(tǒng)的特征系數(shù)存在零和負(fù)值,所以這個(gè)系統(tǒng)是一個(gè)三階不穩(wěn)定系統(tǒng),因此需要設(shè)計(jì)一個(gè)反饋控制器,保證磁懸浮系統(tǒng)穩(wěn)定。寧波大紅鷹學(xué)院畢業(yè)設(shè)計(jì)(論文)16第 3 章 磁懸浮主軸部分設(shè)計(jì)3.1 論文的主要工作磁懸浮軸承是機(jī)電一體化的產(chǎn)物,它的研究工作涉及到電磁理論、控制理論、機(jī)械設(shè)計(jì)、轉(zhuǎn)子動(dòng)力學(xué)等多方面的知識(shí)。本文分六個(gè)方面對(duì)其進(jìn)行了研究:第一章主要介紹了磁懸浮軸承在國(guó)內(nèi)外的發(fā)展?fàn)顩r,磁懸浮軸承的組成、特點(diǎn)、分類、工業(yè)應(yīng)用領(lǐng)域及工作原理等,介紹了選題的主要目的,論文的主要工作;第二章主要介紹了徑向磁懸浮軸承的結(jié)構(gòu)布置,并確定了所要設(shè)計(jì)的磁懸浮軸承的機(jī)械系統(tǒng)的一些結(jié)構(gòu)參數(shù);第三章以實(shí)際的磁懸浮軸承系統(tǒng)為研究對(duì)象,建立了單自由度磁懸浮軸承系統(tǒng)的動(dòng)力學(xué)方程;設(shè)計(jì)條件:1、 徑向磁力軸承的支承力600N;2、 軸向磁力軸承的支承力800N;3.2 磁懸浮軸承機(jī)械系統(tǒng)的設(shè)計(jì)3.2.1 磁懸浮軸承的結(jié)構(gòu)及材料由于磁力是控制電流和氣隙的非線性函數(shù),即在一個(gè)自由度上采用一對(duì)電磁鐵,這樣可以使磁力在平衡位置處能轉(zhuǎn)化為控制電流和氣隙的線性函數(shù)。由于轉(zhuǎn)子不僅會(huì)沿 Y 軸上下運(yùn)動(dòng),而且還會(huì)沿 X 軸水平運(yùn)動(dòng),因此,在水平方向上也要設(shè)置一對(duì)差動(dòng)電磁鐵,如圖 3-1 所示。該圖是一個(gè)實(shí)際的徑向磁懸浮軸承的結(jié)構(gòu),稱為 8 極布置的磁懸浮軸承結(jié)構(gòu)。當(dāng)轉(zhuǎn)子直徑較大時(shí),常采用 16 極布置結(jié)構(gòu)以減小外徑。電磁懸浮軸承材料應(yīng)具有磁性好的特點(diǎn)(主要指磁感應(yīng)強(qiáng)度曲線的曲線范圍大,包圍的面積?。?。常采用導(dǎo)磁性能優(yōu)良的軟磁材料,一般希望材料具有較高的飽和磁感應(yīng)強(qiáng)度、較高的相對(duì)磁導(dǎo)率和良好的加工性能。這樣可以提高磁懸浮軸承的承載力并減小渦流損耗。當(dāng)電磁懸浮軸承支撐高速回轉(zhuǎn)軸時(shí),其轉(zhuǎn)子軸材料還應(yīng)具有強(qiáng)度高的特點(diǎn)。電磁懸浮軸承定子的材料通常采用薄硅鋼片和鐵鈷合金等,轉(zhuǎn)子材料常采用電工純鐵、10 #鋼,也可硅鋼片疊合而成。為了減小渦流損耗,徑向磁懸浮軸承往往采用第 3 章 磁懸浮主軸部分設(shè)計(jì)17疊片結(jié)構(gòu)。而推力磁懸浮軸承通常采用整體結(jié)構(gòu)。圖 3-1 徑向磁懸浮軸承結(jié)構(gòu)簡(jiǎn)圖3.3 磁懸浮軸承系統(tǒng)的結(jié)構(gòu)布置形式圖 3-1 是本文所研究的主動(dòng)磁懸浮軸承的總體結(jié)構(gòu)簡(jiǎn)圖。為了進(jìn)一步減少渦流損耗,在軸徑處,轉(zhuǎn)子也采用疊片結(jié)構(gòu),疊片材料為軟磁材料。推力盤(pán)采用鐵磁材料,在旋轉(zhuǎn)時(shí),推力盤(pán)各部分都是同極性地進(jìn)行勵(lì)磁,渦流損失小,沒(méi)有必要采用采用疊片結(jié)構(gòu),通常采用整體結(jié)構(gòu)。由于磁懸浮軸承系統(tǒng)常用在高速或超高速場(chǎng)合,一般不要驅(qū)動(dòng)環(huán)節(jié),而采用裝入式電機(jī),即將電機(jī)的轉(zhuǎn)子和軸承的轉(zhuǎn)子固定在同一個(gè)軸上。磁懸浮軸承系統(tǒng)還要配備一對(duì)滾動(dòng)軸承作為輔助軸承。磁懸浮軸承工作時(shí),輔助軸承不與轉(zhuǎn)子接觸。當(dāng)突然斷電或磁懸浮軸承失控時(shí),輔助軸承工作,臨時(shí)支承高速轉(zhuǎn)子,防止轉(zhuǎn)子與電機(jī)和磁懸浮軸承的轉(zhuǎn)子相碰,起安全保護(hù)作用。一般采用深溝球軸承,輔助軸承與轉(zhuǎn)子間的間隙通常為磁懸浮軸承氣隙的 1/2。3.4 電磁鐵的設(shè)計(jì)關(guān)于磁懸浮軸承,規(guī)定如下的符號(hào):A---- 磁極的截面面積(m 2)D----- 轉(zhuǎn)子的內(nèi)徑( m)d------ 轉(zhuǎn)子的外徑( m)δ0----- 氣隙,δ 0=(D-d)/2寧波大紅鷹學(xué)院畢業(yè)設(shè)計(jì)(論文)18b ----- -磁懸浮軸承的軸向長(zhǎng)度(m)B0 -----氣隙處的磁感應(yīng)強(qiáng)度 [ T(特斯拉)]BS----- 飽和磁感應(yīng)強(qiáng)度(T)I ------- 繞組的勵(lì)磁電流(A) ,I=I 0+ i 。其中 I0 是偏磁電流,它是固定的常數(shù); i 是控制電流;“+”或“-”號(hào)由控制器自動(dòng)控制確定I0------ 偏磁電流N------- 單個(gè)磁極勵(lì)磁線圈的匝數(shù)圖 3-2 主動(dòng)磁懸浮軸承的總體結(jié)構(gòu)簡(jiǎn)圖電磁鐵的設(shè)計(jì)涉及到有關(guān)磁路的計(jì)算。由于磁性材料的磁特性一般呈非線性特性,磁路的計(jì)算不是很精確。為了簡(jiǎn)化計(jì)算,做如下假設(shè):(1)鐵芯和氣隙處的磁場(chǎng)是均勻分布的(2)鐵磁材料不呈飽和特性(3)不考慮漏磁和磁滯的影響當(dāng)氣隙 δ0 很小時(shí),上述假設(shè)能夠很好的得到滿足。由麥克斯韋吸力公式可得單自由度磁懸浮軸承的承載力為 [5]:F=F1-F2=A( B12-B22) /μ0 (3—1)當(dāng) B1=BS,B 2=0 時(shí),最大承載力為 [5]:Fmax=ABs2/μ0 (3—2) 單位面積的最大承載力為Fmax/A= Bs2/μ0一般的硅鐵材料,建議取 Bs =1.5T, 對(duì) 8 極布置的徑向磁懸浮軸承,如第 3 章 磁懸浮主軸部分設(shè)計(jì)19=θ=π/8,A=πdb/16,由于磁力與 y 軸的夾角為 =π/8,因此徑向磁懸浮軸承在單位? ?軸承投影面積上的最大承載力為:(3—3)202max/316coscmNBdbFS???3.5 初始參數(shù)的選擇(1) 電磁懸浮軸承材料的選擇根據(jù)前面所述,電磁懸浮軸承的定子擬采用薄硅鋼片和鐵鈷合金等制成,轉(zhuǎn)子采用硅鋼片疊合而成。(2) 氣隙 δ0 的選擇電磁懸浮軸承的吸引力與電磁懸浮軸承的氣隙、磁感應(yīng)強(qiáng)度以及有效磁面積有關(guān)。磁感應(yīng)強(qiáng)度和有效磁面積確定后,吸引力與氣隙平方在沒(méi)有達(dá)到磁飽和的區(qū)域內(nèi)成反比。如果選擇的軸承氣隙過(guò)大,則需要增加磁感應(yīng)強(qiáng)度或有效磁面積,這樣會(huì)增大軸承結(jié)構(gòu)尺寸和功放輸出電流;如果選擇的間隙過(guò)小,則又會(huì)對(duì)控制系統(tǒng)提出過(guò)高的要求。綜合以上因素,在設(shè)計(jì)中一般選取 δ0 為軸承直徑的 5‰左右。在本文中該值為已知值,其值為 δ0=0.3mm。(3) 轉(zhuǎn)子外徑的大小根據(jù) 2 的論述,綜合各方面情況,轉(zhuǎn)子外徑 d=60mm。(4) 轉(zhuǎn)子的質(zhì)量該質(zhì)量為已知,m=10kg。(5) 定子的內(nèi)徑由于氣隙 δ0=(D-d)/2,而 δ0 和 d 已知,故 D=60.6mm.。(6) 電磁懸浮軸承磁極數(shù)電磁懸浮軸承的磁極數(shù)對(duì)其承載力、功耗和控制系統(tǒng)的設(shè)計(jì)都有影響。在實(shí)際設(shè)表 3-1 選取磁極數(shù)的經(jīng)驗(yàn)公式轉(zhuǎn)子外徑/mm0~60 60~80 80~200 200磁極數(shù) 8 16 24 32計(jì)過(guò)程中,主要考慮定子制造時(shí)使用的相應(yīng)電機(jī)的定子制造工藝的情況,根據(jù)轉(zhuǎn)子的外徑 d 按表 2 選取。故根據(jù)此表,選擇為 8 極的結(jié)構(gòu)。寧波大紅鷹學(xué)院畢業(yè)設(shè)計(jì)(論文)20(7) 磁懸浮軸承的軸向長(zhǎng)度 b(mm)考慮各方面的情況,根據(jù)已知,設(shè)定 b=80mm。(8) 磁極的截面面積 A (mm2)考慮各方面的情況,根據(jù)已知, 設(shè)定 A=1600mm 2。(9) 偏磁電流 I0和線圈匝數(shù)已知 I 0=1.1A ,可計(jì)算出線圈匝數(shù)為 174 匝。(10)氣隙 δ0 處的磁感應(yīng)強(qiáng)度 B0根據(jù)文獻(xiàn)[5]所述,在設(shè)計(jì)中一般取 B0=Bs/2。由于一般硅鐵材料的飽和磁感應(yīng)強(qiáng)度Bs=1.5T,因此設(shè)計(jì)時(shí)常取 B0=0.6~0.8T。3.6 磁懸浮軸承動(dòng)力學(xué)模型的建立3.6.1 單自由度轉(zhuǎn)子的數(shù)學(xué)模型為了研究問(wèn)題的方便,本文首先討論單自由度轉(zhuǎn)子在主動(dòng)磁懸浮軸承中的運(yùn)動(dòng),并建立單自由度轉(zhuǎn)子的數(shù)學(xué)模型。單自由度磁懸浮系統(tǒng)的結(jié)構(gòu)如圖 3-3 所示:圖 3-3 單自由度磁懸浮系統(tǒng)的結(jié)構(gòu)圖忽略電磁鐵的磁阻及磁通邊緣效應(yīng),將轉(zhuǎn)子作為單質(zhì)點(diǎn)總是集中質(zhì)量來(lái)處理,當(dāng)轉(zhuǎn)子軸心有偏移量 x 時(shí),兩電磁鐵的吸力分別為 [2]:(3—4)201)(4xiINSF????(3—5)202)(iI?式中:μ 0----空氣導(dǎo)磁率S0----單個(gè)磁極面積第 3 章 磁懸浮主軸部分設(shè)計(jì)21I0 ----偏磁電流I -----由 x 引起的控制電流當(dāng)轉(zhuǎn)子僅存在平移,而且無(wú)干擾力存在時(shí),轉(zhuǎn)子的受力可如下表示: ??????????????????????202020214xiIxiINSF??????????????????????2020200 14??xIixIiIS(3—6)?????? ???????????????? 2020200 114 ???? xIixIiINS在(3—6)式中,由于 xmg,則轉(zhuǎn)子的運(yùn)動(dòng)方程 ,即mgx???(3—9)iKxm??對(duì)上式進(jìn)行拉氏變換得(3—10)xisIXsG??2)(至此,已建立起單自由度轉(zhuǎn)子的數(shù)學(xué)模型。據(jù)此,可以將各個(gè)參數(shù)代入,計(jì)算出:ANIAKmNIAKix /987.43,/279502030 ??????將上述兩式代入式(3---7)中,可以得到:(3—11)2795104)(?sG此即實(shí)際磁懸浮軸承系統(tǒng)的動(dòng)力學(xué)模型。3.7 徑向磁懸浮電主軸的系統(tǒng)設(shè)計(jì)1)徑向磁懸浮電主軸的總體形式可分為:周向結(jié)構(gòu)和軸向結(jié)構(gòu).本文采用易于制造、精度較高的周向結(jié)構(gòu),同時(shí)在轉(zhuǎn)子外圈套上壓裝在一起的圓形沖孔薄硅鋼片,來(lái)減小磁滯損耗.2)根據(jù)徑向磁懸浮電主軸定子所處位置的不同,可分為兩種形式:一種是內(nèi)轉(zhuǎn)子外定子,另一種是外轉(zhuǎn)子內(nèi)定子形式.磁懸浮硬盤(pán)多采用后者,本文在磨床上的應(yīng)用采用內(nèi)轉(zhuǎn)子外定子的形式.3)磁極數(shù)的確定:為了降低磁極間的耦合效應(yīng),要求定子結(jié)構(gòu)的上下、左右必須對(duì)稱,因此磁極數(shù)一般選為8的倍數(shù).隨著磁極數(shù)的增加,磁力線在轉(zhuǎn)子和定子線圈中的分布會(huì)更加均勻,能更充分的利用轉(zhuǎn)子和定子的鐵磁材料,且磁勢(shì)的波形較好,附加損耗小,同時(shí),磁極數(shù)目增多,線圈與定子鐵芯的接觸面積增大,也利于線圈散熱,減小溫升,但磁極數(shù)增加時(shí),制造工藝更復(fù)雜,并且相鄰兩磁極之間的間距減小,磁極之間的耦合性增強(qiáng),不利于控制.當(dāng)然由于負(fù)載較大時(shí),為了保證轉(zhuǎn)子在圓周各個(gè)方向受第 3 章 磁懸浮主軸部分設(shè)計(jì)23力均勻或其他具體情況,可選擇合理的磁極數(shù)[6 7] ,本文以8極為例.4)定子槽形狀的確定:定子的線圈槽型的形狀主要有圓形槽、梯形槽和矩形槽三種,本文選用沖片光滑,磁通密度分布均勻、槽滿率高的圓形槽(槽底弧面與定子內(nèi)孔同圓心)為應(yīng)用對(duì)象.24第 4 章 磁懸浮 AMBSAMBS(Active Magnetic Bearing System)是非常復(fù)雜的機(jī)械電力及磁力系統(tǒng)。軸通過(guò)軸承上的勵(lì)磁電流調(diào)節(jié)的電磁力達(dá)到控制其懸浮及旋轉(zhuǎn),可實(shí)現(xiàn)無(wú)接觸式超高速旋轉(zhuǎn),在當(dāng)代測(cè)量、熱核、宇航、超低溫及其他現(xiàn)代技術(shù)應(yīng)用的儀表制造業(yè)和機(jī)械制造業(yè)領(lǐng)域獲得了廣闊的發(fā)展和應(yīng)用空間[1]。1. 轉(zhuǎn)子 2. 電磁鐵 3. 傳感器圖 4-1 磁懸浮轉(zhuǎn)子系統(tǒng)如圖 4-1 所示,一個(gè) AMBS 由兩個(gè)徑向、一個(gè)軸向的磁力支撐(或者兩個(gè)軸向的磁力支撐)和控制線路組成,主要包括轉(zhuǎn)軸、磁力軸承(勵(lì)磁繞組、冗余繞組等)、轉(zhuǎn)軸位置偏差感應(yīng)裝置(位置傳感器或無(wú)傳感器)、控制器及功率放大器、散熱裝置等。由于各對(duì)磁極與轉(zhuǎn)子的相互吸引和推斥作用使轉(zhuǎn)子處于相對(duì)平衡的位置。勵(lì)磁電流的驅(qū)動(dòng)使轉(zhuǎn)子繞幾何軸心高速旋轉(zhuǎn),同時(shí)控制器調(diào)節(jié)定子線圈中的高頻電流,改變作用于