本科畢業(yè)設(shè)計(論文)外文參考文獻譯文及原文學(xué) 院專 業(yè)年級班別學(xué) 號學(xué)生姓名指導(dǎo)教師液體灌裝機智能控制系統(tǒng)的設(shè)計與實現(xiàn)摘要:隨著社會經(jīng)濟的發(fā)展和人民生活水平的不斷提高,對飲料和酒精的需求量也在不斷增加。因此,高端的工業(yè)自動化灌裝設(shè)備也被推廣。本文設(shè)計并制造了一種啤酒灌裝機自動生產(chǎn)線的智能控制系統(tǒng)。本系統(tǒng)由和利時 lm3106a PLC(可編程邏輯控制器)和 hollyview 工業(yè)控制組態(tài)軟件和士林 ss22-023-0.75k 逆變器組成。我們進行了能耗試驗和罐裝啤酒生產(chǎn)試驗的控制。實驗證明該系統(tǒng)的生產(chǎn)效率提高了 11.27。能源消耗的系統(tǒng)也減少了。因此,該系統(tǒng)具有較高的工作效率和節(jié)約能源的優(yōu)點,可以應(yīng)用于未來的生產(chǎn)中。關(guān)鍵詞:灌裝機,可編程邏輯,控制器(可編程序控制器) ,運動控制,小型機械,設(shè)備制造1 簡介灌裝機屬于包裝機械的范疇,是灌裝材料的機械,是灌裝生產(chǎn)線最重要的方面之一。我國的包裝機械已經(jīng)發(fā)展成了液體食品產(chǎn)業(yè),對世界有著重要的影響并在市場上有較高占有率。它已經(jīng)發(fā)展成液體食品行業(yè),對世界有著重要的影響并在市場上有較高占有率 [1]。因此,液體灌裝機市場有很好的發(fā)展?jié)摿?。目前,各種灌裝機生產(chǎn)廠生產(chǎn)的灌裝機在灌裝能力、效率、適用范圍和自動化程度等方面,各有優(yōu)缺點。在很大程度上制約了生產(chǎn)質(zhì)量和生產(chǎn)效率。使用灌裝機不僅可以提高勞動生產(chǎn)率,減少產(chǎn)品損失,保證包裝質(zhì)量,而且可以減少環(huán)境污染和包裝材料的使用量。因此,現(xiàn)代包裝行業(yè)一般采用機械化灌裝機。該灌裝機用于汽水(啤酒、汽水、啤酒、可樂)灌裝。采用和利時 LM PLC 控制灌裝機。中央處理器模塊負責(zé)灌裝機系統(tǒng)的開關(guān)量控制,包括灌裝頭電磁閥的運動、電磁閥的氣缸控制、電磁閥可以節(jié)省材料來控制灌裝機的啟停。并擁有各種光電開關(guān)、液位傳感器檢測等。本機配有高精度自動等壓灌裝閥,它的灌裝速度,瓶裝的液面高度是穩(wěn)定的,與空氣壓力差恒定。最大灌裝容量 1250 毫升,最小灌裝容量 240 毫升,適合玻璃瓶、寵物瓶、罐等,控制形式包括自動控制和手動控制 [2]。本機驅(qū)動系統(tǒng)采用變頻電機,可根據(jù)生產(chǎn)的要求合理調(diào)整電機轉(zhuǎn)速。液壓缸是配備液位自動控制器,如果在這個過程中,有空瓶現(xiàn)象,機器即可自動停充。本設(shè)計是基于可編程序控制器的控制系統(tǒng),集成了可編程序控制器、變頻器控制和計算機技術(shù)應(yīng)用,多段變頻器調(diào)速控制,使電機轉(zhuǎn)速的變化作為反饋信號檢測,從而實現(xiàn)對灌裝機的灌裝速度的控制,使灌裝機編程方便,提高了工業(yè)生產(chǎn)的效率。同時使灌裝機維修方便,節(jié)省了調(diào)整程序的時間,增加了灌裝機的靈活性,使其運行穩(wěn)定可靠,同時。灌裝機是由屬于機械類,包裝機械,是灌裝生產(chǎn)線的重要組成部分。我國的包裝機械已經(jīng)發(fā)展成了液體食品產(chǎn)業(yè),對世界有著重要的影響并在市場上有較高占有率。因此,目前各種灌裝機生產(chǎn)廠生產(chǎn)的灌裝機在灌裝能力、效率、適用范圍和自動化程度等方面,各有優(yōu)缺點。在很大程度上制約了生產(chǎn)質(zhì)量和生產(chǎn)效率。灌裝機是一種包裝機械,廣泛用于食品、化工、制藥等行業(yè) [3]。這臺機器配有各種光電開關(guān)、液位傳感器檢測設(shè)備,高精度自動壓力灌裝閥,灌裝速度快,液體灌裝高度穩(wěn)定,機器壓力恒定。最大充填量量;240 毫升最低填充量,適用于玻璃瓶、PET、罐等??刂菩问桨ㄗ詣涌刂坪褪謩涌刂苾煞N方式。電機傳動采用變頻調(diào)速電機,可根據(jù)生產(chǎn)的生產(chǎn),合理調(diào)整電機轉(zhuǎn)速。由于灌裝缸裝有自動電平控制,如果在灌裝過程中出現(xiàn)空瓶子現(xiàn)象,可以自動停止 [4]。本設(shè)計是基于可編程序控制器的灌裝機控制系統(tǒng)的研究,采用集成可編程邏輯控制器(可編程控制器) ,通過可編程控制器(可編程控制器)對變頻器進行多段調(diào)速,使電機轉(zhuǎn)速作為反饋信號的變化進行檢測,從而控制灌裝機的灌裝速度,從而使灌裝機編程方便和提高工業(yè)生產(chǎn)效率。同時使灌裝機維修方便,節(jié)省了調(diào)整程序的時間,增加了灌裝機的靈活性,使其運行穩(wěn)定可靠,同時。灌裝機是由屬于機械類,包裝機械,是灌裝生產(chǎn)線的重要組成部分。2 系統(tǒng)的組成2.1 控制系統(tǒng)的結(jié)構(gòu)在采用 PLC 作為主控設(shè)備的控制系統(tǒng)中,傳感器作為檢測器件,變頻器作為電機調(diào)速控制裝置,通過一個通信協(xié)議或與 ht7a00t 人機人機接口連接電腦。圖 2.1 控制系統(tǒng)結(jié)構(gòu)它的作用是監(jiān)控生產(chǎn)線和記錄數(shù)據(jù)處理產(chǎn)品,灌裝控制系統(tǒng)由一個主可編程邏輯控制器(PLC )和 3 個輔助擴展可編程邏輯控制器(PLC) ,PLC 主要是lm3106a,通過它控制灌裝機的檢測開關(guān),面板上的按鈕,變頻器控制電機和電磁閥。可編程邏輯控制器(PLC)根據(jù)檢測到的傳感器信號,并通過編輯程序來完成一系列動作,如填充圖 2.1。2.2 控制系統(tǒng)算法該系統(tǒng)的電機轉(zhuǎn)速信號由變送器轉(zhuǎn)換成電信號,并裝進控制器。在信號的基礎(chǔ)上,可編程邏輯控制器自動顯示數(shù)據(jù)。在比較兩種轉(zhuǎn)速的基礎(chǔ)上,根據(jù)控制信號的偏差,對變頻器進行變頻調(diào)速,以調(diào)節(jié)電機的轉(zhuǎn)速,用實際的數(shù)據(jù)來消除轉(zhuǎn)速偏差。通過改變機械擾動引起的偏差,使到生產(chǎn)線的電機轉(zhuǎn)速恒定,同時保證生產(chǎn)線效率。本系統(tǒng)是一個基于電機轉(zhuǎn)速的閉環(huán)控制系統(tǒng)。本系統(tǒng)采用比例、積分和微分(積分)控制算法在可編程序控制器中實現(xiàn)。在可編程邏輯控制器(可編程控制器)中,估計值按照設(shè)定的時間值采樣。假設(shè)時間周期為 t,初始值為零。用矩形積分代替精度連續(xù)積分。用差分法代替連續(xù)微分法,可以簡化為(1) 。在這個公式里面, 是系統(tǒng)偏移。SB該算法具有 2 個特點,一是快速響應(yīng),另一個是超調(diào)。在穩(wěn)健的性能和跟蹤性能方面,它表現(xiàn)出良好的控制效果。通過實際應(yīng)用的控制系統(tǒng)取得了良好的控制效果。該公式在可編程控制器內(nèi)部被解釋為一個連續(xù)控制系統(tǒng),簡化為離散控制系統(tǒng)。2.3 機械結(jié)構(gòu)該灌裝機采用和利時 LM 系列可編程邏輯控制器(PLC)控制實現(xiàn)自動操作和自動控制整個生產(chǎn)線。這一部分的原理是通過分度撥輪,將空瓶取出再對其進行填充,如圖 2.2,在指令下,將瓶頸抬升,定位裝置的壓料口進行填充密封[5]。再次將瓶子里空氣抽回真空狀態(tài)后,將液體鋼瓶內(nèi)二氧化碳氣體的背壓注入到瓶子里,當(dāng)氣瓶內(nèi)的氣體壓力等于鋼瓶壓力時,在彈簧的作用下,閥門打開。這時,在重力引導(dǎo)作用下,液體通過形狀的傘反射環(huán)上的消聲器自動進入瓶內(nèi),在瓶子中的二氧化碳再循環(huán)到液體鋼瓶。當(dāng)瓶子液面達到一定高度時,它會使到氣管關(guān)閉,此時,機器會自動停止在液體灌裝。然后放液閥和閥關(guān)閉,當(dāng)瓶子落下,排水瓶頸為高壓氣體以防止液體與氣體噴涌溢流。填充部分完整實現(xiàn)。1.行星撥盤 2.撥盤 3.軸圖 2.2 運輸瓶的機械結(jié)構(gòu)3 硬件設(shè)計3.1 控制器的選擇根據(jù)現(xiàn)場設(shè)備、電氣柜的控制要求,選擇 lm3106a 可編程控制器。可編程序邏輯控制器(可編程控制器)有 14 點輸入和 10 點晶體管輸出,共有 24 個數(shù)字輸入/輸出點,用 24 伏直流電源供電,在終端上做輸出,在終端下是做輸入。LM 系列可編程邏輯控制器(PLC)具有獨特的保護功能,可以實現(xiàn)用戶程序和停電保持區(qū)的數(shù)據(jù)永久保存,機器消除權(quán)力的原因丟失數(shù)據(jù)丟失現(xiàn)象;同時,它支持五種編程語言國際化,適合不同的程序員需要;LM 系列應(yīng)用領(lǐng)域廣泛,有良好的客戶基礎(chǔ),因此,可靠性和安全系數(shù)大大好。除了模塊,有三個輔助模塊,分別是 lm3401,lm3320,和 LM3310。中央處理器模塊集成了一定數(shù)量的輸入/輸出點,在同一時間,一個部分的輸入 /輸出點具有高速計數(shù)器,高輸出,和其他功能 [6]。隨著系統(tǒng)需求的不斷擴大,需要更多的輸入/輸出點連接到可編程邏輯控制器(可編程控制器) ,此時可以通過匹配擴展模塊來增加更多的輸入/輸出點和更多的功能,以實現(xiàn)對某些條件的控制。3.2 工業(yè)電源選擇本系統(tǒng)采用西門子的 100 的工業(yè)電源,具有高可靠性、高效率、高集成度的特點。滿足了提高工作效率、節(jié)約能源的系統(tǒng)要求。3.3 變頻傳動的選型交流伺服電機驅(qū)動永磁同步伺服電機和交流異步伺服電機。交流永磁同步電動機轉(zhuǎn)子由永磁體組成,定子繞組形成一個旋轉(zhuǎn)磁場,只要負載的大小不超過同步轉(zhuǎn)矩。隨旋轉(zhuǎn)磁場的永磁轉(zhuǎn)子同步旋轉(zhuǎn),它類似于基本交流永磁同步電動機。交流異步伺服電機定子由繞組勵磁繞組和控制繞組的 90 個繞組組成。交流繞組的接入和控制的相位差勵繞組的角度,使定子旋轉(zhuǎn)磁場產(chǎn)生橢圓,轉(zhuǎn)子斷磁,在電磁力的牽引下旋轉(zhuǎn)。目前,在精密計算機數(shù)控(數(shù)控)系統(tǒng)中,交流永磁同步電機被廣泛使用。隨著交流變頻調(diào)速技術(shù)的迅速發(fā)展,有的變頻器在伺服功能、控制精度與傳統(tǒng)的交流伺服系統(tǒng)和沒有明顯的差距,因此它們有集中發(fā)展的趨勢。采用數(shù)字信號處理器(數(shù)字信號處理器)來控制伺服驅(qū)動器。它可以實現(xiàn)復(fù)雜的控制算法,數(shù)字化,網(wǎng)絡(luò)化和智能化。功率器件廣泛應(yīng)用于智能功率模塊驅(qū)動電路的核心設(shè)計,內(nèi)部集成的驅(qū)動電路,也具有過壓,過電流,過熱,欠壓故障檢測和保護電路,在主電路中加入了軟啟動電路,以減少啟動過程中的影響。首先通過三相全橋功率驅(qū)動單元整流電路輸入三相電源或電源整流器,相應(yīng)的直流(DC) 。整流后是良好的三相電流或城市電力,然后通過變頻三相正弦脈寬調(diào)制(脈寬調(diào)制) ,用電壓型逆變器驅(qū)動三相永磁同步交流伺服電機。動力驅(qū)動單元的整個過程可以簡化為交-直-交整流單元(ACDC) ,它是三相橋式整流電路的主電路拓撲結(jié)構(gòu)。根據(jù)電機的工作效率和設(shè)備的要求,變頻器的選擇是石林 ss22-023-0.75 K,三相交流額定電壓是 200-230 伏,適配電機功率為 1.9 kW,額定電流為 5 A。shss22 型逆變器的體積很小,它屬于小型產(chǎn)品,可以空間小的控制柜,調(diào)試簡單方便。它的控制方式為正弦波 SPWM,控制性能強,其載波頻率范圍為0 至 15 千赫,在降低電機的電磁噪聲有效,模擬接口的通用性,負載能力強,提供多功能的輸出端子信號。它主要用于立體倉庫系統(tǒng)行業(yè),食品,飲料和包裝行業(yè)。3.4 觸摸屏的選擇觸摸屏根據(jù)原理和使用材料的不同,可分為電阻式觸摸屏、電容式觸摸屏和聲波傳感器、紅外線觸摸屏觸摸屏。電阻式觸摸屏精度高,但其價格昂貴且容易損壞,電容式觸摸屏設(shè)計合理,新穎性更直觀,更有趣,高耐久性,但也容易受到環(huán)境影響和成本較高。電容式觸摸屏功能性方面的全面性和穩(wěn)定性,它已經(jīng)擁有了相當(dāng)?shù)氖袌龇蓊~,在各種觸摸屏。紅外線觸摸屏價格低廉,但其易受光線干擾的影響。聲波感應(yīng)式觸摸屏如果有水滴或塵埃干擾,其反應(yīng)會變慢,甚至不能工作??偨Y(jié)每一類觸摸屏都有其優(yōu)點和缺點,我們根據(jù)需要,選擇和利時是觸摸屏的觸摸屏,該模型是 ht7a00t。4.3 寸黑白 192x64,輸入電源電壓為 24V 直流。4 程序設(shè)計4.1 輸入/輸出分配系統(tǒng)表 4.1 灌裝機輸入/輸出分配表%IX0.0 低液位 %QX0.0 主發(fā)動機%IX0.1 高液位 %QX0.1 液壓泵%IX0.2 主機故障 %QX0.2 供應(yīng)電磁閥%IX0.3 液體故障泵 %QX0.3 電磁閥%IX0.4 輸送帶故障 %QX0.4 排氣電磁閥%QX0.5 進氣電磁閥%QX0.6 輸送帶根據(jù)系統(tǒng)的設(shè)計要求,根據(jù)我對輸入和輸出端子的定義,確保布線完成。4.2 主程序框圖圖 4.1 控制系統(tǒng)程序框圖圖 4.1 是沖瓶機順序程序功能圖。這個程序是在按下啟動按鈕 ym002 和分布式控制系統(tǒng)(DCS)遠程控制、邏輯與輸出,其次是邏輯或,然后觸發(fā)復(fù)位觸發(fā)器,這一點在遙控狀態(tài),DCS 的狀態(tài)是,在同一時間以不在本地控制狀態(tài),與 DC 為 0,此時只有遠程控制啟動噴淋泵工作。局部控制工作時,按下啟動按鈕 M004,DCS 以沒有結(jié)果也為 1,此時,觸發(fā)設(shè)置、沖瓶泵啟動 [7]。按下啟動 ym003 和 DCS 遠程控制按鈕后,邏輯與可以輸出,其次是邏輯或,然后觸發(fā)復(fù)位,此時遙控狀態(tài),DCS 系統(tǒng)在狀態(tài) 1,同時以不在本地控制狀態(tài),和 DC 為 0,此時只有遠程控制噴淋泵停止工作 [8]。局部控制工作時,按下啟動按鈕 M003 DCS,因為沒有結(jié)果也為 1,此時,觸發(fā)器復(fù)位,沖瓶泵停止。4.3 配置接口設(shè)計圖 4.2 配置界面根據(jù)系統(tǒng)的要求,我選擇了冬青視圖組態(tài)軟件,完成了組態(tài)設(shè)計 [9]。冬青視圖提供了一個豐富、簡單、易于使用的界面,提供了大量的圖形元素和圖形庫,同時也為用戶創(chuàng)造畫廊精靈并提供易于使用的界面;產(chǎn)品的歷史曲線、報表報表和網(wǎng)絡(luò)發(fā)布功能都大幅提高,軟件的功能性和可用性都有很大地提高 [10]實驗的成功率,利用現(xiàn)有的計算機就可完成自動控制系統(tǒng)實驗;它節(jié)省了能源,提高了實驗效率 [11]。圖 4.2 是配置界面設(shè)計圖。它將一個好的程序下載到可編程控制器,當(dāng)觸摸屏程序,有一個點的接口如圖 4.2,在剛開始時,它是對每個開關(guān)運行一個單一的點,當(dāng)觸摸屏界面,它需要做一個模擬的關(guān)鍵點移動操作開關(guān) [12]??删幊绦蚩刂破骺梢膺B接可編程邏輯控制器輸出。5 測試從工作效率的角度來看,以瓶容量為 500ml 為例,普通灌裝機的工作效率平均是 400 瓶每小時。優(yōu)秀的灌裝機的工作效率平均可達到 700 瓶每小時。經(jīng)過優(yōu)化設(shè)計和 100 次測試,每次測試一小時,智能灌裝機的工作效率平均可達到每小時 779 瓶。該系統(tǒng)提高了工作效率 11.27%。從節(jié)能環(huán)保的角度看,空載功耗,滿載功耗相比傳統(tǒng)的功率轉(zhuǎn)換效率如圖5.1。它減少能源消耗的設(shè)計要求。圖 5.1 能量消耗對比圖6 結(jié)果本設(shè)計主要是采用可編程邏輯控制器(可編程控制器)和變頻器控制電機做旋轉(zhuǎn)皮帶傳動,然后將瓶子轉(zhuǎn)移到灌裝機上,實現(xiàn)了配瓶的速度和灌裝速度的協(xié)調(diào),提高了生產(chǎn)效率。本設(shè)計的基本思想是:在系統(tǒng)啟動后,按下電機啟動開關(guān),如果電機是異常的,熱電流繼電器立即切斷和保護電機,如果電機是正常的,那么電機啟動下一步工作。電機開始轉(zhuǎn)動,在傳送帶作用下驅(qū)動灌裝瓶運動,通過光電傳感器,對瓶子計數(shù)和發(fā)送的數(shù)據(jù)到可編程邏輯控制器(PLC)進行數(shù)據(jù)處理,可編程邏輯控制器(PLC )根據(jù)瓶子的運動速度在內(nèi)存里進行比較,確定是否有調(diào)速的需要,如果不需要控制電機的速度,它就按照原來的速度運行,如果有需要調(diào)速,可編程邏輯控制器(PLC)輸出控制信號到變頻器進行多級調(diào)速控制,轉(zhuǎn)換器接收控制信號,可編程邏輯器收到后(PLC)發(fā)出的控制信號,進行內(nèi)部處理。一個特定的頻率電壓的輸出,實現(xiàn)電機的頻率控制。變頻器輸出反饋信號輸入到可編程邏輯控制器,實現(xiàn)對變頻器的保護。本設(shè)計基本符合設(shè)計要求。該系統(tǒng)具有操作簡單、工作可靠、界面友好、節(jié)能、綜合保護等功能,具有較高的自動監(jiān)測程度、生產(chǎn)效率高的特點,具有良好的推廣應(yīng)用前景。參考文獻[1] Shiro Yamakawa,et al, “Trade of between IM-DD and coherent system in high data rate optical inter orbit links,” SPIE, No.3615, pp.80~89, 1999.[2] C.Q.Qi, “PLC technology and application,”Beijing: Mechanical Industrial Press, (2000) (In Chinese).[3] XU Liang-xiong, “The Electrical Control System PLC Transformation of The XA6132 Milling,” International Journal of Plant Engineering and Management, Vol.18 (2013) No.4, pp.249.[4] C.X.Li and B.Q.Li, “The application of PLC to motor of pendent an assembly line”. China Mechanical Engineering. Vol.5 (1994) No.5, pp.38-40.(In Chinese).[5] Aijun Xu, “Principle and design of intelligent measuring control instrument,” Beijing University of aeronautics and astronautics press, Vol.127 (2004).[6] W.Cai and Y.F.Ju, “PLC distributed control system,” Journal of Xi’an Highway University, Vol.16 (2006) No.3, pp.140-143. (In Chinese)[7] Kambezidis H D, Vera D-P, Adamopoulos A D, “Radiative transfer.Ⅰ. Atmospheric transmission monitoring with modeling and ground-based multispectral measurements,” App Opt, Vol.36 (1997) No.27, pp.6976-6982.[8] Yifei Wu, Sheng Li, Hua Cai, “Design and implementation of pan- tilt control system based on MSP430 MCU,” Microcomputer Information, Vol.22, No.7, pp.90-93, 2006.[9] Chien, Min Lee, “Power-efficient coded modulation for wireless infrared communication,” University Of California, 1998.[10] Kindel B C, Qu Z, Goetz A F H, “Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm,” App Opt, Vol.40(2001) No.21, pp.3483-3494.[11] Sijie Shao, Yong Cao, Bin Shen, “Design and realization of control system of laser training simulator for individual-antagonism,” Journal of Academy of Armored Force Engineering, Vol.27, No.1, pp.65-68, 2013.[12] C.Q.Qi, “PLC technology and application,”Beijing: Mechanical Industrial Press, (2000) (In Chinese).