《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專(zhuān)題六 直線(xiàn)、圓、圓錐曲線(xiàn) 專(zhuān)題能力訓(xùn)練17 橢圓、雙曲線(xiàn)、拋物線(xiàn) 理.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專(zhuān)題六 直線(xiàn)、圓、圓錐曲線(xiàn) 專(zhuān)題能力訓(xùn)練17 橢圓、雙曲線(xiàn)、拋物線(xiàn) 理.doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專(zhuān)題能力訓(xùn)練17 橢圓、雙曲線(xiàn)、拋物線(xiàn)
一、能力突破訓(xùn)練
1.已知雙曲線(xiàn)C:x2a2-y2b2=1(a>0,b>0)的一條漸近線(xiàn)方程為y=52x,且與橢圓x212+y23=1有公共焦點(diǎn),則C的方程為( )
A.x28-y210=1 B.x24-y25=1
C.x25-y24=1 D.x24-y23=1
2.以?huà)佄锞€(xiàn)C的頂點(diǎn)為圓心的圓交C于A(yíng),B兩點(diǎn),交C的準(zhǔn)線(xiàn)于D,E兩點(diǎn).已知|AB|=42,|DE|=25,則C的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為( )
A.2 B.4
C.6 D.8
3.(2018全國(guó)Ⅱ,理5)若雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)的離心率為3,則其漸近線(xiàn)方程為( )
A.y=2x B.y=3x
C.y=22x D.y=32x
4.(2018天津,理7)已知雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)的離心率為2,過(guò)右焦點(diǎn)且垂直于x軸的直線(xiàn)與雙曲線(xiàn)交于A(yíng),B兩點(diǎn).設(shè)A,B到雙曲線(xiàn)的同一條漸近線(xiàn)的距離分別為d1和d2,且d1+d2=6,則雙曲線(xiàn)的方程為( )
A.x24-y212=1 B.x212-y24=1
C.x23-y29=1 D.x29-y23=1
5.設(shè)雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作與x軸垂直的直線(xiàn)l交兩漸近線(xiàn)于A(yíng),B兩點(diǎn),與雙曲線(xiàn)的一個(gè)交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn).若OP=mOA+nOB(m,n∈R),且mn=,則該雙曲線(xiàn)的離心率為( )
A.322 B.355
C.324 D.
6.雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)的漸近線(xiàn)為正方形OABC的邊OA,OC所在的直線(xiàn),點(diǎn)B為該雙曲線(xiàn)的焦點(diǎn).若正方形OABC的邊長(zhǎng)為2,則a= .
7.已知雙曲線(xiàn)C:x2a2-y2b2=1(a>0,b>0)的右頂點(diǎn)為A,以A為圓心,b為半徑作圓A,圓A與雙曲線(xiàn)C的一條漸近線(xiàn)交于M,N兩點(diǎn).若∠MAN=60,則C的離心率為.
8.
如圖,已知拋物線(xiàn)C1:y=x2,圓C2:x2+(y-1)2=1,過(guò)點(diǎn)P(t,0)(t>0)作不過(guò)原點(diǎn)O的直線(xiàn)PA,PB分別與拋物線(xiàn)C1和圓C2相切,A,B為切點(diǎn).
(1)求點(diǎn)A,B的坐標(biāo);
(2)求△PAB的面積.
注:直線(xiàn)與拋物線(xiàn)有且只有一個(gè)公共點(diǎn),且與拋物線(xiàn)的對(duì)稱(chēng)軸不平行,則稱(chēng)該直線(xiàn)與拋物線(xiàn)相切,稱(chēng)該公共點(diǎn)為切點(diǎn).
9.
如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0),B(1,0)構(gòu)成△MAB,且直線(xiàn)MA,MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)設(shè)直線(xiàn)y=x+m(m>0)與y軸相交于點(diǎn)P,與軌跡C相交于點(diǎn)Q,R,且|PQ|<|PR|,求|PR||PQ|的取值范圍.
10.已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線(xiàn)C上任意一點(diǎn)M(x,y)滿(mǎn)足|MA+MB|=OM(OA+OB)+2.
(1)求曲線(xiàn)C的方程;
(2)點(diǎn)Q(x0,y0)(-2
0,b>0)的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),過(guò)F2作C的一條漸近線(xiàn)的垂線(xiàn),垂足為P.若|PF1|=6|OP|,則C的離心率為( )
A.5 B.2 C.3 D.2
13.已知F是拋物線(xiàn)C:y2=8x的焦點(diǎn),M是C上一點(diǎn),FM的延長(zhǎng)線(xiàn)交y軸于點(diǎn)N,若M為FN的中點(diǎn),則|FN|= .
14.在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線(xiàn)x2=2py(p>0)交于A(yíng),B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線(xiàn)的漸近線(xiàn)方程為 .
15.已知圓C:(x+1)2+y2=20,點(diǎn)B(1,0),點(diǎn)A是圓C上的動(dòng)點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與線(xiàn)段AC交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡C1的方程;
(2)設(shè)M0,15,N為拋物線(xiàn)C2:y=x2上的一動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線(xiàn)C2的切線(xiàn)交曲線(xiàn)C1于P,Q兩點(diǎn),求△MPQ面積的最大值.
16.已知?jiǎng)狱c(diǎn)C是橢圓Ω:x2a+y2=1(a>1)上的任意一點(diǎn),AB是圓G:x2+(y-2)2=的一條直徑(A,B是端點(diǎn)),CACB的最大值是314.
(1)求橢圓Ω的方程;
(2)已知橢圓Ω的左、右焦點(diǎn)分別為點(diǎn)F1,F2,過(guò)點(diǎn)F2且與x軸不垂直的直線(xiàn)l交橢圓Ω于P,Q兩點(diǎn).在線(xiàn)段OF2上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
專(zhuān)題能力訓(xùn)練17 橢圓、雙曲線(xiàn)、拋物線(xiàn)
一、能力突破訓(xùn)練
1.B 解析 由題意得ba=52,c=3.
又a2+b2=c2,所以a2=4,b2=5,
故C的方程為x24-y25=1.
2.B 解析 不妨設(shè)拋物線(xiàn)C的方程為y2=2px(p>0),圓的方程為x2+y2=R2.
因?yàn)閨AB|=42,所以可設(shè)A(m,22).
又因?yàn)閨DE|=25,
所以R2=5+p24,m2+8=R2,8=2pm,解得p2=16.
故p=4,即C的焦點(diǎn)到準(zhǔn)線(xiàn)的距離是4.
3.A 解析 ∵e=ca=3,
∴c2a2=b2+a2a2=ba2+1=3.
∴ba=2.
∵雙曲線(xiàn)焦點(diǎn)在x軸上,∴漸近線(xiàn)方程為y=bax,
∴漸近線(xiàn)方程為y=2x.
4.C 解析 由雙曲線(xiàn)的對(duì)稱(chēng)性,不妨取漸近線(xiàn)y=x.如圖所示,|AD|=d1,|BC|=d2,過(guò)點(diǎn)F作EF⊥CD于點(diǎn)E.
由題易知EF為梯形ABCD的中位線(xiàn),
所以|EF|=12(d1+d2)=3.
又因?yàn)辄c(diǎn)F(c,0)到y(tǒng)=bax的距離為|bc-0|a2+b2=b,所以b=3,b2=9.
因?yàn)閑=ca=2,c2=a2+b2,所以a2=3,所以雙曲線(xiàn)的方程為x23-y29=1.故選C.
5.C 解析 在y=x中令x=c,得Ac,bca,Bc,-bca,在雙曲線(xiàn)x2a2-y2b2=1中令x=c得Pc,b2a.
當(dāng)點(diǎn)P的坐標(biāo)為c,b2a時(shí),由OP=mOA+nOB,
得c=(m+n)c,b2a=mbca-nbca,則m+n=1,m-n=bc.
由m+n=1,mn=29,得m=23,n=13或m=13,n=23(舍去),
∴bc=13,∴c2-a2c2=19,∴e=324.
同理,當(dāng)點(diǎn)P的坐標(biāo)為c,-b2a時(shí),e=324.
故該雙曲線(xiàn)的離心率為324.
6.2 解析 ∵四邊形OABC是正方形,∴∠AOB=45,∴不妨設(shè)直線(xiàn)OA的方程即雙曲線(xiàn)的一條漸近線(xiàn)的方程為y=x.∴ba=1,即a=b.又|OB|=22,∴c=22.∴a2+b2=c2,即a2+a2=(22)2,可得a=2.
7.233 解析 如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,
∵∠MAN=60,
∴|AP|=32b,|OP|=|OA|2-|PA|2=a2-34b2.
設(shè)雙曲線(xiàn)C的一條漸近線(xiàn)y=bax的傾斜角為θ,則tan θ=|AP||OP|=32ba2-34b2.又tan θ=ba,∴32ba2-34b2=ba,解得a2=3b2,
∴e=1+b2a2=1+13=233.
8.解 (1)由題意知直線(xiàn)PA的斜率存在,故可設(shè)直線(xiàn)PA的方程為y=k(x-t),
由y=k(x-t),y=14x2消去y,整理得x2-4kx+4kt=0,
由于直線(xiàn)PA與拋物線(xiàn)相切,得k=t.
因此,點(diǎn)A的坐標(biāo)為(2t,t2).
設(shè)圓C2的圓心為D(0,1),點(diǎn)B的坐標(biāo)為(x0,y0),由題意知:點(diǎn)B,O關(guān)于直線(xiàn)PD對(duì)稱(chēng),故y02=-x02t+1,x0t-y0=0,解得x0=2t1+t2,y0=2t21+t2.
因此,點(diǎn)B的坐標(biāo)為2t1+t2,2t21+t2.
(2)由(1)知|AP|=t1+t2和直線(xiàn)PA的方程tx-y-t2=0.
點(diǎn)B到直線(xiàn)PA的距離是d=t21+t2.
設(shè)△PAB的面積為S(t),
所以S(t)=12|AP|d=t32.
9.解 (1)設(shè)M的坐標(biāo)為(x,y),當(dāng)x=-1時(shí),直線(xiàn)MA的斜率不存在;
當(dāng)x=1時(shí),直線(xiàn)MB的斜率不存在.
于是x≠1,且x≠-1.
此時(shí),MA的斜率為yx+1,MB的斜率為yx-1.
由題意,有yx+1yx-1=4.
整理,得4x2-y2-4=0.
故動(dòng)點(diǎn)M的軌跡C的方程為4x2-y2-4=0(x≠1).
(2)由y=x+m,4x2-y2-4=0消去y,可得3x2-2mx-m2-4=0. ①
對(duì)于方程①,其判別式Δ=(-2m)2-43(-m2-4)=16m2+48>0,
而當(dāng)1或-1為方程①的根時(shí),m的值為-1或1.
結(jié)合題設(shè)(m>0)可知,m>0,且m≠1.
設(shè)Q,R的坐標(biāo)分別為(xQ,yQ),(xR,yR),
則xQ,xR為方程①的兩根,
因?yàn)閨PQ|<|PR|,所以|xQ|<|xR|.
因?yàn)閤Q=m-2m2+33,xR=m+2m2+33,且Q,R在同一條直線(xiàn)上,
所以|PR||PQ|=xRxQ=21+3m2+121+3m2-1=1+221+3m2-1.
此時(shí)1+3m2>1,且1+3m2≠2,
所以1<1+221+3m2-1<3,
且1+221+3m2-1≠53,
所以1<|PR||PQ|=xRxQ<3,且|PR||PQ|=xRxQ≠53.
綜上所述,|PR||PQ|的取值范圍是1,53∪53,3.
10.解 (1)由題意可知MA=(-2-x,1-y),MB=(2-x,1-y),OM=(x,y),OA+OB=(0,2).
∵|MA+MB|=OM(OA+OB)+2,
∴4x2+4(1-y)2=2y+2,∴x2=4y.
∴曲線(xiàn)C的方程為x2=4y.
(2)設(shè)Qx0,x024,
則S△QAB=21-x024=21-x024.
∵y=x24,∴y=12x,∴kl=12x0,
∴切線(xiàn)l的方程為y-x024=12x0(x-x0)與y軸交點(diǎn)H0,-x024,|PH|=1-x024=1-x024.
直線(xiàn)PA的方程為y=-x-1,直線(xiàn)PB的方程為y=x-1,
由y=-x-1,y=12x0x-x024,得xD=x0-22.
由y=x-1,y=12x0x-x024,得xE=x0+22,
∴S△PDE=12|xD-xE||PH|=1-x024,
∴△QAB與△PDE的面積之比為2.
二、思維提升訓(xùn)練
11.A 解析 方法一:由題意,易知直線(xiàn)l1,l2斜率不存在時(shí),不合題意.
設(shè)直線(xiàn)l1方程為y=k1(x-1),
聯(lián)立拋物線(xiàn)方程,得y2=4x,y=k1(x-1),
消去y,得k12x2-2k12x-4x+k12=0,
所以x1+x2=2k12+4k12.
同理,直線(xiàn)l2與拋物線(xiàn)的交點(diǎn)滿(mǎn)足x3+x4=2k22+4k22.
由拋物線(xiàn)定義可知|AB|+|DE|=x1+x2+x3+x4+2p=2k12+4k12+2k22+4k22+4=4k12+4k22+8≥216k12k22+8=16,
當(dāng)且僅當(dāng)k1=-k2=1(或-1)時(shí),取得等號(hào).
方法二:如圖所示,由題意可得F(1,0),設(shè)AB傾斜角為θ不妨令θ∈0,π2.
作AK1垂直準(zhǔn)線(xiàn),AK2垂直x軸,結(jié)合圖形,根據(jù)拋物線(xiàn)的定義,可得|AF|cosθ+|GF|=|AK1|,|AK1|=|AF|,|GF|=2,
所以|AF|cos θ+2=|AF|,即|AF|=21-cosθ.
同理可得|BF|=21+cosθ,所以|AB|=41-cos2θ=4sin2θ.
又DE與AB垂直,即DE的傾斜角為π2+θ,則|DE|=4sin2π2+θ=4cos2θ,
所以|AB|+|DE|=4sin2θ+4cos2θ=4sin2θcos2θ=414sin22θ=16sin22θ≥16,當(dāng)θ=π4時(shí)取等號(hào),即|AB|+|DE|最小值為16,故選A.
12.C 解析 由題意畫(huà)圖,如圖所示,可知|PF2|=b,|OP|=a.由題意,得|PF1|=6a.
設(shè)雙曲線(xiàn)漸近線(xiàn)的傾斜角為θ.
∴在△OPF1中,由余弦定理知cos(180-θ)=a2+c2-(6a)22ac=c2-5a22ac=-cos θ.
又cos θ=ac,
∴c2-5a22ac=-ac,解得c2=3a2.∴e=3.
13.6 解析 設(shè)N(0,a),由題意可知F(2,0).
又M為FN的中點(diǎn),則M1,a2.
因?yàn)辄c(diǎn)M在拋物線(xiàn)C上,所以a24=8,即a2=32,即a=42.
所以N(0,42).
所以|FN|=(2-0)2+(042)2=6.
14.y=22x 解析 拋物線(xiàn)x2=2py的焦點(diǎn)F0,p2,準(zhǔn)線(xiàn)方程為y=-p2.
設(shè)A(x1,y1),B(x2,y2),則|AF|+|BF|=y1+p2+y2+p2=y1+y2+p=4|OF|=4p2=2p.
所以y1+y2=p.
聯(lián)立雙曲線(xiàn)與拋物線(xiàn)方程得x2a2-y2b2=1,x2=2py,
消去x,得a2y2-2pb2y+a2b2=0.
所以y1+y2=2pb2a2=p,所以b2a2=12.
所以該雙曲線(xiàn)的漸近線(xiàn)方程為y=22x.
15.解 (1)由已知可得,點(diǎn)P滿(mǎn)足|PB|+|PC|=|AC|=25>2=|BC|,
所以動(dòng)點(diǎn)P的軌跡C1是一個(gè)橢圓,其中2a=25,2c=2.
動(dòng)點(diǎn)P的軌跡C1的方程為x25+y24=1.
(2)設(shè)N(t,t2),則PQ的方程為
y-t2=2t(x-t)?y=2tx-t2.
聯(lián)立方程組y=2tx-t2,x25+y24=1,消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,
有Δ=80(4+20t2-t4)>0,x1+x2=20t34+20t2,x1x2=5t4-204+20t2.
而|PQ|=1+4t2|x1-x2|=1+4t280(4+20t2-t4)4+20t2,
點(diǎn)M到PQ的高為h=15+t21+4t2,
由S△MPQ=12|PQ|h代入化簡(jiǎn),得
S△MPQ=510-(t2-10)2+104≤510104=1305,當(dāng)且僅當(dāng)t2=10時(shí),S△MPQ可取最大值1305.
16.解 (1)設(shè)點(diǎn)C的坐標(biāo)為(x,y),
則x2a+y2=1.
連接CG,由CA=CG+GA,CB=CG+GB=CG-GA,又G(0,2),CG=(-x,2-y),
可得CACB=CG2-GA2=x2+(y-2)2-94=a(1-y2)+(y-2)2-94=-(a-1)y2-4y+a+74,其中y∈[-1,1].
因?yàn)閍>1,所以當(dāng)y=42(1-a)≤-1,即1-1,即a>3時(shí),CACB的最大值是4(1-a)a+74-164(1-a),
由條件得4(1-a)a+74-164(1-a)=314,
即a2-7a+10=0,解得a=5或a=2(舍去).
綜上所述,橢圓Ω的方程是x25+y2=1.
(2)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),PQ的中點(diǎn)坐標(biāo)為(x0,y0),則滿(mǎn)足x125+y12=1,x225+y22=1,兩式相減,
整理,得y2-y1x2-x1=-x2+x15(y2+y1)=-x05y0,
從而直線(xiàn)PQ的方程為y-y0=-x05y0(x-x0).
又右焦點(diǎn)F2的坐標(biāo)是(2,0),
將點(diǎn)F2的坐標(biāo)代入PQ的方程得
-y0=-x05y0(2-x0),
因?yàn)橹本€(xiàn)l與x軸不垂直,所以2x0-x02=5y02>0,從而0
下載提示(請(qǐng)認(rèn)真閱讀)
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎(jiǎng)勵(lì)!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019高考數(shù)學(xué)大二輪復(fù)習(xí)
專(zhuān)題六
直線(xiàn)、圓、圓錐曲線(xiàn)
專(zhuān)題能力訓(xùn)練17
橢圓、雙曲線(xiàn)、拋物線(xiàn)
2019
高考
數(shù)學(xué)
二輪
復(fù)習(xí)
專(zhuān)題
直線(xiàn)
圓錐曲線(xiàn)
能力
訓(xùn)練
17
橢圓
雙曲線(xiàn)
拋物線(xiàn)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶(hù)自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶(hù)書(shū)面授權(quán),請(qǐng)勿作他用。
鏈接地址:http://www.hcyjhs8.com/p-5450507.html