高中數(shù)學(xué) 3.1.1-3.1.2變化率問(wèn)題 導(dǎo)數(shù)的概念課件 新人教A版選修1-1.ppt
《高中數(shù)學(xué) 3.1.1-3.1.2變化率問(wèn)題 導(dǎo)數(shù)的概念課件 新人教A版選修1-1.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué) 3.1.1-3.1.2變化率問(wèn)題 導(dǎo)數(shù)的概念課件 新人教A版選修1-1.ppt(36頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
成才之路 數(shù)學(xué) 路漫漫其修遠(yuǎn)兮吾將上下而求索 人教A版 選修1 11 2 導(dǎo)數(shù)及其應(yīng)用 第三章 萊布尼茲 GottfriendWilhelmLeibniz 1646 1716 是17 18世紀(jì)之交德國(guó)最重要的數(shù)學(xué)家 物理學(xué)家和哲學(xué)家 一個(gè)舉世罕見(jiàn)的科學(xué)天才 他博覽群書(shū) 涉獵百科 對(duì)豐富人類(lèi)的科學(xué)知識(shí)寶庫(kù)做出了不可磨滅的貢獻(xiàn) 萊布尼茲出生于德國(guó)東部萊比錫的一個(gè)書(shū)香之家 父親是萊比錫大學(xué)的道德哲學(xué)教授 母親出生在一個(gè)教授家庭 15歲時(shí) 他進(jìn)了萊比錫大學(xué)學(xué)習(xí) 他廣泛閱讀了培根 開(kāi)普勒 伽利略等人的著作 并對(duì)他們的著作進(jìn)行深入的思考和評(píng)價(jià) 在聽(tīng)了教授講授歐幾里德的 幾何原本 的課程后 萊布尼茲對(duì)數(shù)學(xué)產(chǎn)生了濃厚的興趣 17歲時(shí)他在耶拿大學(xué)學(xué)習(xí)了短時(shí)期的數(shù)學(xué) 并獲得了哲學(xué)碩士學(xué)位 20歲時(shí) 萊布尼茲轉(zhuǎn)入阿爾特道夫大學(xué) 這一年 他發(fā)表了第一篇數(shù)學(xué)論文 論組合的藝術(shù) 這是一篇關(guān)于數(shù)理邏輯的文章 其基本思想是出于想把理論的真理性論證歸結(jié)于一種計(jì)算的結(jié)果 1673年 萊布尼茲被推薦為英國(guó)皇家學(xué)會(huì)會(huì)員 此時(shí) 他的興趣已明顯地朝向了數(shù)學(xué)和自然科學(xué) 開(kāi)始了對(duì)無(wú)窮小算法的研究 獨(dú)立地創(chuàng)立了微積分的基本概念與算法 和牛頓并蒂雙輝共同奠定了微積分學(xué) 1676年 他到漢諾威公爵府擔(dān)任法律顧問(wèn)兼圖書(shū)館館長(zhǎng) 1700年被選為巴黎科學(xué)院院士 建立了柏林科學(xué)院并任首任院長(zhǎng) 3 1變化率與導(dǎo)數(shù) 第三章 3 1 1變化率問(wèn)題3 1 2導(dǎo)數(shù)的概念 1 理解函數(shù)在某點(diǎn)的平均變化率的概念并會(huì)求此變化率 2 通過(guò)對(duì)大量實(shí)例的分析 經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程 了解導(dǎo)數(shù)概念的實(shí)際背景 知道瞬時(shí)變化率就是導(dǎo)數(shù) 體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵 重點(diǎn) 函數(shù)在某一點(diǎn)的平均變化率 瞬時(shí)變化率 導(dǎo)數(shù)的概念 難點(diǎn) 導(dǎo)數(shù)的概念的理解 思維導(dǎo)航1 我們都吹過(guò)氣球 回憶一下吹氣球的過(guò)程 可以發(fā)現(xiàn) 隨著氣球內(nèi)空氣容量的增加 氣球的半徑增加得越來(lái)越慢 從數(shù)學(xué)的角度 如何描述這種現(xiàn)象呢 變化率問(wèn)題 思維導(dǎo)航2 在高臺(tái)跳水運(yùn)動(dòng)中 運(yùn)動(dòng)員相對(duì)于水面的高度h 單位 m 與起跳后的時(shí)間t 單位 s 的函數(shù)關(guān)系為h h t h是否隨t的變化均勻變化 斜率 思維導(dǎo)航物體的平均速度能否精確反映它的運(yùn)動(dòng)狀態(tài) 如何描述物體在某一時(shí)刻的運(yùn)動(dòng)狀態(tài) 函數(shù)在某點(diǎn)處的導(dǎo)數(shù) 答案 C 2 一物體的運(yùn)動(dòng)方程是s 3 2t 則在 2 2 1 這段時(shí)間內(nèi)的平均速度是 A 0 41B 2C 0 3D 0 2 答案 B 3 函數(shù)y f x 自變量x由x0改變到x0 x時(shí) 函數(shù)的改變量 y為 A f x0 x B f x0 xC f x0 xD f x0 x f x0 答案 D 解析 根據(jù)定義 y f x2 f x1 f x0 x f x0 答案 A 分析 直接利用概念求平均變化率 先求出表達(dá)式 再直接代入數(shù)據(jù)就可以得出相應(yīng)的平均變化率 平均變化率 某質(zhì)點(diǎn)沿曲線(xiàn)運(yùn)動(dòng)的方程為f x 2x2 1 x表示時(shí)間 f x 表示位移 則該質(zhì)點(diǎn)從x 1到x 2的平均速度為 A 4B 8C 6D 6 答案 D 分析 欲求瞬時(shí)變化率 先求平均變化率 然后正確求解其趨向值即可 瞬時(shí)變化率 已知物體的運(yùn)動(dòng)方程是S 4t2 16t S的單位為m t的單位為s 則該物體在t 2s時(shí)的瞬時(shí)速度為 A 3m sB 2m sC 1m sD 0m s 答案 D 求函數(shù)y 3x2在點(diǎn)x 1處的導(dǎo)數(shù) 分析 問(wèn)題只給出了一個(gè)孤立的點(diǎn) 而非變化范圍 所以要先構(gòu)造點(diǎn)附近的一個(gè)變化范圍 以便求解平均變化率 從而利用定義求函數(shù)在此點(diǎn)處的導(dǎo)數(shù) 利用定義求函數(shù)在某點(diǎn)處的導(dǎo)數(shù) 求y f x x3 2x 1在x 1處的導(dǎo)數(shù) 辨析 錯(cuò)誤的原因是由于對(duì)導(dǎo)數(shù)的定義理解不清 函數(shù)值f x0 x f x0 所對(duì)應(yīng)的自變量的改變量為 x0 x x0 x- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 3.1.1-3.1.2變化率問(wèn)題 導(dǎo)數(shù)的概念課件 新人教A版選修1-1 3.1 變化 問(wèn)題 導(dǎo)數(shù) 概念 課件 新人 選修
鏈接地址:http://www.hcyjhs8.com/p-5519072.html