本科畢業(yè)論文(設(shè)計(jì))溝槽凸輪的工藝設(shè)計(jì)及數(shù)控加工 學(xué) 院 小三號(hào)黑體居中(下同)專 業(yè)學(xué) 號(hào)學(xué)生姓名指導(dǎo)教師提交日期 年 月 日誠(chéng) 信 承 諾 書本人鄭重承諾和聲明:我承諾在畢業(yè)論文撰寫過程中遵守學(xué)校有關(guān)規(guī)定,恪守學(xué)術(shù)規(guī)范,此畢業(yè)論文(設(shè)計(jì))中均系本人在指導(dǎo)教師指導(dǎo)下獨(dú)立完成,沒有剽竊、抄襲他人的學(xué)術(shù)觀點(diǎn)、思想和成果,沒有篡改研究數(shù)據(jù),凡涉及其他作者的觀點(diǎn)和材料,均作了注釋,如有違規(guī)行為發(fā)生,我愿承擔(dān)一切責(zé)任,接受學(xué)校的處理,并承擔(dān)相應(yīng)的法律責(zé)任。畢業(yè)論文(設(shè)計(jì))作者簽名: 年 月 日 I摘 要凸輪是一具有曲面輪廓的構(gòu)件,一般多為原動(dòng)件(有時(shí)為機(jī)架);當(dāng)凸輪為原動(dòng)件時(shí),通常作等速連續(xù)轉(zhuǎn)動(dòng)或移動(dòng),而從動(dòng)件則按預(yù)期輸出特性要求作連續(xù)或間隙的往復(fù)運(yùn)動(dòng)、移動(dòng)或平面復(fù)雜運(yùn)動(dòng)。本文主要介紹凸輪的大體概念與凸輪廓線的設(shè)計(jì)計(jì)算,以及后期使用三維軟件仿真其廓線。凸輪輪廓曲線是凸輪機(jī)構(gòu)設(shè)計(jì)的關(guān)鍵,常用的設(shè)計(jì)方法有解析法和圖解法。本文將對(duì)這兩這種方法進(jìn)行大致分析與應(yīng)用設(shè)計(jì),利用三維軟件繪制凸輪機(jī)構(gòu)實(shí)體模型,并用三維軟件的三維設(shè)計(jì)凸輪機(jī)構(gòu)運(yùn)動(dòng)模型,進(jìn)行機(jī)構(gòu)運(yùn)動(dòng)學(xué)仿真分析,可以較準(zhǔn)確掌握機(jī)械產(chǎn)品零部件的位移、速度和加速度等動(dòng)力學(xué)參數(shù),進(jìn)而可分析機(jī)構(gòu)動(dòng)作的可靠性。主要技術(shù)要求為:熟悉凸輪設(shè)計(jì)基本原理及相關(guān)理論計(jì)算;凸輪機(jī)構(gòu)運(yùn)動(dòng)仿真及受力分析;指定內(nèi)容的翻譯和三維軟件的熟練應(yīng)用。本文將重點(diǎn)研究平行凸輪建模,受力分析和運(yùn)動(dòng)仿真與分析。通過理論上的計(jì)算和研究,結(jié)合圖解以及解析的方法,算出凸輪廓線的大致數(shù)據(jù),用三維軟件將其繪制出,進(jìn)行運(yùn)動(dòng)仿真,記錄和研究其位移、速度和加速度等動(dòng)力參數(shù),最后分析出機(jī)構(gòu)動(dòng)作的可靠性。使以后工作中,可以更準(zhǔn)確掌握機(jī)械產(chǎn)品零部件的動(dòng)力方面?zhèn)€參數(shù),減少事故的發(fā)生,降低設(shè)計(jì)的難度。在當(dāng)今經(jīng)濟(jì)全球化、市場(chǎng)競(jìng)爭(zhēng)日趨激烈的時(shí)代,新產(chǎn)品的開發(fā)時(shí)間成為企業(yè)能否在激烈的市場(chǎng)競(jìng)爭(zhēng)中取勝的關(guān)鍵因素。傳統(tǒng)的產(chǎn)品設(shè)計(jì)過程中重復(fù)計(jì)算、重復(fù)建模等工作量很大,一直困擾著產(chǎn)品開發(fā)人員,嚴(yán)重影響了產(chǎn)品的設(shè)計(jì)質(zhì)量和效率。這種現(xiàn)象在凸輪的設(shè)計(jì)中尤為突顯。針對(duì)這一問題,本課題利用三維軟件中的運(yùn)動(dòng)仿真模塊對(duì)凸輪機(jī)構(gòu)運(yùn)動(dòng)進(jìn)行模擬仿真。本論文的主要研究?jī)?nèi)容有:1、溝槽凸輪設(shè)計(jì)2、溝槽凸輪機(jī)構(gòu)的零部件的實(shí)體建模3、溝槽凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真關(guān)鍵詞:溝槽凸輪 實(shí)體建模 運(yùn)動(dòng)仿真IIABSTRACTCam is a member having a curved profile, and more generally for the original moving parts (sometimes Rack); when the cam is original moving parts, the usually constant speed continuous rotation or movement, and is expected to press the follower output characteristic requirements for continuously or intermittently reciprocating motion, move, or complicated planar motion.This paper describes the concept of a generally cam and cam profile design calculations, and its post-use three-dimensional software simulation profile.Cam cam profile is a key mechanism design, common design methods analytical method and graphical method. This paper will analyze both this method substantially and application design, using three-dimensional solid model rendering software cam mechanism, and a three-dimensional model of three-dimensional movement of the cam mechanism design software, kinematics simulation mechanism analysis, can accurately grasp machinery parts displacement, velocity and acceleration kinetic parameters, and then can analyze the reliability of agency actions.The main technical requirements: Familiar cam design rationale and relevant theoretical calculation; cam mechanism motion simulation and stress analysis; proficient specify the content of translation and three-dimensional software.This article will focus on parallel cam modeling, stress analysis and motion simulation and analysis. Through theoretical calculations and research, combined with graphical and analytical method calculates data substantially convex contour, three-dimensional software to draw, motion simulation, documentation and research of their displacement, velocity and acceleration of dynamic parameters, the final analysis the reliability of the mechanism of action. So after work, we can more accurately grasp the dynamic parameters of mechanical aspects of product components, reduce accidents, reduce the difficulty of the design.In today's economic globalization, the increasingly fierce market competition era, new product development time can be the key factor to win in the fierce competition in the market. Traditional product design process is repeated calculations, modeling, repeated heavy workload, has been plagued by product development staff, seriously affecting the quality and efficiency of product design. This phenomenon is particularly highlight cam design. To solve this problem, this study using three-dimensional motion simulation software module cam mechanism motion simulation.IIIThe main contents of this paper are:1, the cam groove design2, solid modeling groove cam mechanism parts3, the groove cam mechanism motion simulationKeywords: cam groove Solid Modeling Motion SimulationIV目 錄1 緒論11.1 本文研究的背景 .11.1.1 我國(guó)凸輪機(jī)構(gòu)的研究現(xiàn)狀.11.1.2 我國(guó)凸輪機(jī)構(gòu) CAD/CAM 的研究現(xiàn)狀 11.1.3 國(guó)外凸輪機(jī)構(gòu)及其 CAD/CAM 的研究現(xiàn)狀 .21.1.4 我國(guó)凸輪 CAD 系統(tǒng)存在的問題 21.2 本文研究的主要內(nèi)容 .21.3 本文意義 .21.4 本章小結(jié) .32 凸輪機(jī)構(gòu)設(shè)計(jì)分析42.1 從動(dòng)件運(yùn)動(dòng)規(guī)律的選取 .42.1.1 從動(dòng)件常用的基本運(yùn)動(dòng)規(guī)律.42.1.2 從動(dòng)件運(yùn)動(dòng)規(guī)律的選取原則.42.2 凸輪機(jī)構(gòu)基本尺寸的設(shè)計(jì) .52.2.1 凸輪機(jī)構(gòu)壓力角和基圓半徑.52.2.2 凸輪機(jī)構(gòu)的偏距.62.2.3 凸輪滾子半徑.62.3 凸輪輪廓設(shè)計(jì) .72.4 機(jī)構(gòu)簡(jiǎn)介 .82.5 本章小結(jié) .93 凸輪機(jī)構(gòu)的實(shí)體建模與裝配103.1 三維軟件簡(jiǎn)介 .103.2 零部件的實(shí)體建模 .103.3 裝配原理簡(jiǎn)介與裝配模型的建立 .113.3.1 三維仿真裝配原理介紹.113.3.2 裝配模型建立.143.4 本章小結(jié) .174 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真184.1 計(jì)算機(jī)仿真概述 .184.1.1 計(jì)算機(jī)仿真的基本概念及特點(diǎn).184.1.2 計(jì)算機(jī)仿真技術(shù)在制造業(yè)中的應(yīng)用.184.2 三維運(yùn)動(dòng)仿真簡(jiǎn)介 .19V4.2.1 三維運(yùn)動(dòng)仿真的特點(diǎn).194.2.2 三維運(yùn)動(dòng)仿真的基本術(shù)語.204.2.3 三維運(yùn)動(dòng)仿真的步驟.214.3 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真 .214.3.1 設(shè)置機(jī)構(gòu)環(huán)境.214.3.2 分析.254.4 本章小結(jié) .295 凸輪的數(shù)控加工工藝305.1 零件的分析 .305.1.1 零件的作用.305.1.2 零件的工藝分析.305.2 凸輪零件加工主要工序安排 .315.3 機(jī)械加工余量、工序尺寸及毛坯尺寸的確定 .325.4 確定切削用量及基本工時(shí)(機(jī)動(dòng)時(shí)間) .326 凸輪的數(shù)控加工仿真及程序446.1 初始參數(shù)設(shè)定 .446.2 創(chuàng)建刀具 .446.3 創(chuàng)建粗加工操作 .456.4 加工上表面刀軌 .486.5 加工凸輪槽加工刀軌 .50結(jié) 論54致 謝55參考文獻(xiàn)561 緒論1 1 緒論1.1 本文研究的背景1.1.1 我國(guó)凸輪機(jī)構(gòu)的研究現(xiàn)狀凸輪機(jī)構(gòu)是典型的常用機(jī)構(gòu)之一。凸輪機(jī)構(gòu)是能使從動(dòng)件按照給定的運(yùn)動(dòng)規(guī)律運(yùn)動(dòng)的高副機(jī)構(gòu),可以實(shí)現(xiàn)任意給定的位移、速度、加速度等運(yùn)動(dòng)規(guī)律,而且與其它機(jī)構(gòu)配合可以實(shí)現(xiàn)復(fù)雜的運(yùn)動(dòng)要求。工程中,幾乎所有簡(jiǎn)單的、復(fù)雜的重復(fù)性機(jī)械動(dòng)作都可由凸輪機(jī)構(gòu)或者包括凸輪機(jī)構(gòu)的組合機(jī)構(gòu)來實(shí)現(xiàn)。又由于凸輪機(jī)構(gòu)具有平穩(wěn)性好,重復(fù)精度高,運(yùn)動(dòng)特性良好,機(jī)構(gòu)的構(gòu)件少,體積小,剛性大,周期控制簡(jiǎn)單,可靠性好,壽命長(zhǎng)等優(yōu)點(diǎn),因而是現(xiàn)代工業(yè)生產(chǎn)設(shè)備中不可缺少的機(jī)構(gòu)之一,被廣泛用于各種自動(dòng)機(jī)中。例如,自動(dòng)包裝機(jī)、自動(dòng)成型機(jī)、自動(dòng)裝配機(jī)、自動(dòng)機(jī)床、紡織機(jī)械、農(nóng)用機(jī)械、印刷機(jī)械加工中心環(huán)刀機(jī)構(gòu)、高速壓力機(jī)械等。我國(guó)以前對(duì)凸輪機(jī)構(gòu)深入系統(tǒng)地研究較少,僅在內(nèi)燃機(jī)配氣凸輪機(jī)構(gòu)有較深入研究。1990 年以來,有關(guān)凸輪機(jī)構(gòu)的應(yīng)用研究取得了一大批成果,許多己應(yīng)用于生產(chǎn)。陜西科技大學(xué)完成的(高速高精度間歇轉(zhuǎn)位凸輪分度機(jī)構(gòu)CAD/CAM), 1995 年獲陜西省科技進(jìn)步二等獎(jiǎng):開發(fā)的 “凸輪分度機(jī)構(gòu)傳動(dòng)裝置”獲中國(guó)輕工總會(huì)優(yōu)秀新產(chǎn)品一等獎(jiǎng);加工弧面凸輪的“XK5001 雙回轉(zhuǎn)坐標(biāo)數(shù)控銑床”獲實(shí)用新型專利。天津大學(xué)關(guān)于分度凸輪機(jī)構(gòu)的研究,得到了國(guó)家自然科學(xué)基金的支持;研究開發(fā)的兩片式平行分度凸輪機(jī)構(gòu)達(dá)到了國(guó)內(nèi)領(lǐng)先水平。此外,上海交通大學(xué)、大連輕工業(yè)學(xué)院、合肥工業(yè)大學(xué)和山東大學(xué)(山東工業(yè)大學(xué)) 等在理論應(yīng)用研究方面都取得了很多具有國(guó)際或國(guó)內(nèi)先進(jìn)水平的科研成果。盡管我國(guó)對(duì)凸輪機(jī)構(gòu)的應(yīng)用和研究也有多年的歷史,對(duì)凸輪機(jī)構(gòu)的設(shè)計(jì)、運(yùn)動(dòng)規(guī)律、輪廓線、動(dòng)力學(xué)、優(yōu)化設(shè)計(jì)等方面的研究都取得了很多科研成果。但是,與先進(jìn)國(guó)家相比,我國(guó)對(duì)凸輪機(jī)構(gòu)的設(shè)計(jì)和制造上都還存在較大的差距,尤其在制造方面。在國(guó)外核心技術(shù)也只是集中在少數(shù)的幾家公司和科研機(jī)構(gòu)中,而且由于技術(shù)保密等因素,具有一定參考價(jià)值的相關(guān)資料很少公開發(fā)表。這樣就在無形中制約著我國(guó)凸輪機(jī)構(gòu)設(shè)計(jì)和制造水平的提高,造成高速、高精度的凸輪機(jī)構(gòu)必須依賴進(jìn)口的被動(dòng)局面。1.1.2 我國(guó)凸輪機(jī)構(gòu) CAD/CAM 的研究現(xiàn)狀我國(guó)凸輪機(jī)構(gòu)運(yùn)動(dòng)學(xué)的理論研究己經(jīng)達(dá)到了較高的水平,為凸輪機(jī)構(gòu)設(shè)計(jì)奠定了堅(jiān)實(shí)的理論基礎(chǔ)。當(dāng)今,凸輪機(jī)構(gòu)設(shè)計(jì)己廣泛采用解析法并借助于計(jì)算機(jī)來完成,數(shù)控機(jī)床用于凸輪加工也有很長(zhǎng)的歷史。我國(guó)發(fā)表的凸輪機(jī)構(gòu)CAD/CAM 方面的文獻(xiàn)較多。但這些凸輪的 CAD/CAM 系統(tǒng)核心技術(shù)僅被某些商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)2企業(yè)所有,并未在市場(chǎng)上以商品軟件的形式出現(xiàn)。迄今為止我國(guó)凸輪機(jī)構(gòu)CAD/CAM 技術(shù)仍未得到有效的推廣應(yīng)用。另外,由于凸輪專用軟件開發(fā)更新的速度慢,遠(yuǎn)遠(yuǎn)跟不上當(dāng)今計(jì)算機(jī)軟、硬件的發(fā)展速度,使得現(xiàn)有凸輪機(jī)構(gòu)CAD/CAM 軟件己大為落后,不能完全適應(yīng)廣大設(shè)計(jì)人員的要求。1.1.3 國(guó)外凸輪機(jī)構(gòu)及其 CAD/CAM 的研究現(xiàn)狀自上世紀(jì)三十年代以來,人們就開始了對(duì)凸輪機(jī)構(gòu)的研究,并且研究工作隨著新技術(shù)、新方法的產(chǎn)生和應(yīng)用在不斷深化。60 年代后,對(duì)凸輪的研究逐步成熟起來,出現(xiàn)了較完整的運(yùn)動(dòng)規(guī)律的設(shè)計(jì),在梯薩爾的著作中就采用了多項(xiàng)式運(yùn)動(dòng)規(guī)律。對(duì)凸輪機(jī)構(gòu)的研究不斷向縱深方向發(fā)展,開始對(duì)凸輪進(jìn)行有限元分析及非線性問題的研究,同時(shí),歐美各國(guó)學(xué)者對(duì)高速凸輪的研究也有新的突破,許多學(xué)者發(fā)表了關(guān)于凸輪機(jī)構(gòu)的優(yōu)化設(shè)計(jì)、凸輪振動(dòng)、動(dòng)態(tài)響應(yīng)等方面的論文。日木在凸輪機(jī)構(gòu)方面的研究也有巨大貢獻(xiàn)。在機(jī)構(gòu)設(shè)計(jì)方面,致力于尋求凸輪機(jī)構(gòu)的精確解和使凸輪曲線多樣化,以適應(yīng)新的要求。并加強(qiáng)了對(duì)凸輪機(jī)構(gòu)動(dòng)力學(xué)和振動(dòng)方面的研究和標(biāo)準(zhǔn)化研究,發(fā)展成批生產(chǎn)的標(biāo)準(zhǔn)凸輪機(jī)構(gòu),在此基礎(chǔ)上進(jìn)一步拓展凸輪機(jī)構(gòu) CAD/CAM 系統(tǒng)。美國(guó)、日木等國(guó)家的一些凸輪制造企業(yè)開發(fā)了供木企業(yè)使用的凸輪 CAD/CAM 系統(tǒng),有的還形成了商業(yè)化軟件,如日木 SUNCALL 公司開發(fā)的 HYMOCAM 系統(tǒng)等。1.1.4 我國(guó)凸輪 CAD 系統(tǒng)存在的問題通過調(diào)研以及查閱大量文獻(xiàn)資料,我國(guó)現(xiàn)有的凸輪 CAD 系統(tǒng)存在如下問題:(1)多數(shù)是在 AutoCAD 基礎(chǔ)上進(jìn)行二次開發(fā)而成的,不具有三維建模功能;(2)沒有商品化的凸輪 CAD 系統(tǒng)出現(xiàn);(3)現(xiàn)有的基于三維的凸輪 CAD 系統(tǒng)中,融入先進(jìn)的數(shù)據(jù)庫(kù)管理技術(shù)的還沒有主要原因是由于開發(fā)界面的功能很弱,而且根木沒有連接數(shù)據(jù)庫(kù)的功能;(4)由于凸輪專用軟件開發(fā)更新的速度慢,遠(yuǎn)遠(yuǎn)跟不上當(dāng)今計(jì)算機(jī)硬件的發(fā)展速度,使得現(xiàn)有的平面凸輪機(jī)構(gòu) CAD 應(yīng)用軟件已大為落后,不能適應(yīng)實(shí)際生產(chǎn)的需要;(5)集成化、智能化和網(wǎng)絡(luò)化很不完善。1.2 本文研究的主要內(nèi)容本文研究的主要內(nèi)容是關(guān)于溝槽凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真。首先介紹了溝槽凸輪的設(shè)計(jì),然后在三維軟件中實(shí)現(xiàn)其實(shí)體建模和裝配,最后才對(duì)裝配好的溝槽凸輪機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)仿真,并對(duì)仿真結(jié)果進(jìn)行了分析。1 緒論3 1.3 本文意義對(duì)凸輪機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)仿真,可以根據(jù)仿真結(jié)果以及碰撞干涉檢查,對(duì)設(shè)計(jì)的零件進(jìn)行結(jié)構(gòu)等方面的修改,大大簡(jiǎn)化機(jī)構(gòu)的設(shè)計(jì)開發(fā)過程,縮短開發(fā)周期,減少開發(fā)費(fèi)用,同時(shí)提高產(chǎn)品質(zhì)量。1.4 本章小結(jié)首先本章對(duì)課題的研究背景進(jìn)行了詳細(xì)的介紹,然后又對(duì)本文的研究?jī)?nèi)容和本文意義進(jìn)行介紹。商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)42 凸輪機(jī)構(gòu)設(shè)計(jì)分析2.1 從動(dòng)件運(yùn)動(dòng)規(guī)律的選取運(yùn)動(dòng)規(guī)律設(shè)計(jì)包括對(duì)所設(shè)計(jì)的凸輪機(jī)構(gòu)輸出件的運(yùn)動(dòng)提出的所有給定要求。例如,推程、回程運(yùn)動(dòng)角、遠(yuǎn)休止角、近休止角、行程以及推程、回程的運(yùn)動(dòng)規(guī)律曲線形狀,都屬于運(yùn)動(dòng)規(guī)律設(shè)計(jì)。所謂凸輪曲線并不是凸輪輪廓的形狀曲線,而是凸輪驅(qū)動(dòng)從動(dòng)件的運(yùn)動(dòng)曲線。研究凸輪曲線的目的在于用最短時(shí)間、最圓滑、無振動(dòng)、耗能少的方式來驅(qū)動(dòng)從動(dòng)件。凸輪曲線特性優(yōu)良與否直接影響凸輪機(jī)構(gòu)的精度、效率和壽命。從動(dòng)件的運(yùn)動(dòng)情況,是由凸輪輪廓曲線的形狀決定的。一定輪廓曲線形狀的凸輪,能夠使從動(dòng)件產(chǎn)生一定規(guī)律的運(yùn)動(dòng);反過來實(shí)現(xiàn)從動(dòng)件不同的運(yùn)動(dòng)規(guī)律,要求凸輪具有不同現(xiàn)狀的輪廓曲線,即凸輪的輪廓曲線與從動(dòng)件所實(shí)現(xiàn)的運(yùn)動(dòng)規(guī)律之間存在著確定的依從關(guān)系。因此,凸輪機(jī)構(gòu)設(shè)計(jì)的關(guān)鍵一步,是根據(jù)工作要求和使用場(chǎng)合,選擇或設(shè)計(jì)從動(dòng)件的運(yùn)動(dòng)規(guī)律。在設(shè)計(jì)凸輪機(jī)構(gòu)基木尺寸和凸輪輪廓之前,必須根據(jù)凸輪機(jī)構(gòu)的工作性能要求選擇從動(dòng)件的運(yùn)動(dòng)規(guī)律方程式,選擇不同的從動(dòng)件運(yùn)動(dòng)規(guī)律將直接影響凸輪機(jī)構(gòu)的基本尺寸設(shè)計(jì)、輪廓設(shè)計(jì)及凸輪機(jī)構(gòu)的運(yùn)動(dòng)性能等。2.1.1 從動(dòng)件常用的基本運(yùn)動(dòng)規(guī)律幾種常見的基木運(yùn)動(dòng)規(guī)律有三角函數(shù)運(yùn)動(dòng)規(guī)律(簡(jiǎn)諧運(yùn)動(dòng)規(guī)律、擺線運(yùn)動(dòng)規(guī)律及雙諧運(yùn)動(dòng)規(guī)律等);簡(jiǎn)單多項(xiàng)式運(yùn)動(dòng)規(guī)律;等速運(yùn)動(dòng)規(guī)律(一次項(xiàng)運(yùn)動(dòng)規(guī)律)、等加等減速運(yùn)動(dòng)規(guī)律( 二次項(xiàng)運(yùn)動(dòng)規(guī)律)等。2.1.2 從動(dòng)件運(yùn)動(dòng)規(guī)律的選取原則從動(dòng)件運(yùn)動(dòng)規(guī)律的選擇或設(shè)計(jì),涉及到許多因素。除了需要滿足機(jī)械的具體工作要求外,還應(yīng)使凸輪機(jī)構(gòu)具有良好的動(dòng)力特性,同時(shí)又要考慮所設(shè)計(jì)的凸輪廓線便于加工,這些因素又往往是互相制約的。因此在選擇或設(shè)計(jì)運(yùn)動(dòng)規(guī)律時(shí),必須根據(jù)使用場(chǎng)合、工作條件等分清主次,綜合考慮。下面是一些常用運(yùn)動(dòng)規(guī)律的適用場(chǎng)合:(l)等速運(yùn)動(dòng)規(guī)律在很多情況下能滿足凸輪機(jī)構(gòu)推程的工作要求,但是在從動(dòng)件行程的開始和終止位置存在剛性沖擊,是運(yùn)動(dòng)特性最差的曲線,所以等速運(yùn)動(dòng)規(guī)律很少單獨(dú)使用,且不適用于中、高速。(2)等加速等減速運(yùn)動(dòng)規(guī)律的速度曲線連續(xù),在所有曲線中其最大加速度值為最小,但在從動(dòng)件行程的開始、終止和由正加速度變?yōu)樨?fù)加速度的中間位置,加速度的有限值突變將導(dǎo)致柔性沖擊,因而不能在中、高速場(chǎng)合使用。(3)余弦加速度運(yùn)動(dòng)規(guī)律消除了行程中間位置的加速度突變,且易于計(jì)算和加工,在中速時(shí)也能獲得合理的從動(dòng)件的運(yùn)動(dòng)。但當(dāng)這種運(yùn)動(dòng)規(guī)律用于升—?!亍_\(yùn)動(dòng)時(shí),在行程的起始和終止位置因加速度突變而仍有柔性沖擊。當(dāng)這種規(guī)律用2 凸輪機(jī)構(gòu)設(shè)計(jì)分析5 于升—回—升型運(yùn)動(dòng)時(shí),則加速度曲線連續(xù),沒有柔性沖擊。(4)正弦加速度運(yùn)動(dòng)規(guī)律用于升—停—回—停運(yùn)動(dòng)時(shí),從動(dòng)件在行程的起始和終止位置加速度無突變,因而無柔性沖擊,有利于機(jī)構(gòu)運(yùn)轉(zhuǎn)平穩(wěn)。但它用于升—?!亍_\(yùn)動(dòng)時(shí),在推程與回程的連接點(diǎn)處,躍度從有限的正值變?yōu)樨?fù)值,因而加速度曲線不連續(xù)。這種曲線要求機(jī)械加工的準(zhǔn)確性高于其他曲線。正弦加速度運(yùn)動(dòng)規(guī)律廣泛用于中速凸輪機(jī)構(gòu),但不適于高速場(chǎng)合。2.2 凸輪機(jī)構(gòu)基本尺寸的設(shè)計(jì)凸輪機(jī)構(gòu)的基本尺寸對(duì)凸輪機(jī)構(gòu)的結(jié)構(gòu)、傳力性能都有重要的影響。凸輪機(jī)構(gòu)的基本參數(shù)選擇的不恰當(dāng),則可能造成壓力角過大或產(chǎn)生運(yùn)動(dòng)失真現(xiàn)象。凸輪機(jī)構(gòu)的基本尺寸之間互相影響、互相制約,所以如何合理地設(shè)計(jì)這些基本尺寸,也是凸輪機(jī)構(gòu)設(shè)計(jì)中要解決的重要問題。凸輪機(jī)構(gòu)基本尺寸的設(shè)計(jì)問題是在給定從動(dòng)件運(yùn)動(dòng)規(guī)律和許用壓力角的條件下尋求一組適用的尺寸,從而使設(shè)計(jì)的凸輪機(jī)構(gòu)性能佳、壽命長(zhǎng)。溝槽凸輪機(jī)構(gòu)主要設(shè)計(jì)參數(shù)有:基圓半徑和偏距,滾子半徑,擺桿長(zhǎng)度等。為提高凸輪機(jī)構(gòu)傳力效果,希望機(jī)構(gòu)在推程中壓力角盡量小。一般來講,這些參數(shù)的選擇,除應(yīng)保證使從動(dòng)件能夠準(zhǔn)確地實(shí)現(xiàn)預(yù)期的運(yùn)動(dòng)規(guī)律外,還應(yīng)當(dāng)使機(jī)構(gòu)具有良好的受力狀況和緊湊的尺寸。2.2.1 凸輪機(jī)構(gòu)壓力角和基圓半徑凸輪壓力角是從動(dòng)件運(yùn)動(dòng)(速度)方向與傳動(dòng)軸線方向之間的夾角。壓力角是衡量凸輪機(jī)構(gòu)傳力特性好壞的一個(gè)重要參數(shù)。從減小推力、避免自鎖,使機(jī)構(gòu)具有良好的受力狀況來看,壓力角應(yīng)越小越好。同時(shí)設(shè)計(jì)凸輪機(jī)構(gòu)時(shí),除了使機(jī)構(gòu)具有良好的受力狀況外,還希望機(jī)構(gòu)結(jié)構(gòu)緊湊。在實(shí)現(xiàn)相同運(yùn)動(dòng)規(guī)律的情況下,基圓半徑越大,凸輪的尺寸也越大。因此,要獲得輕便緊湊的凸輪機(jī)構(gòu),就應(yīng)當(dāng)使基圓半徑盡可能地小。而基圓半徑 r 及偏距 e 與凸輪壓力角 有如下關(guān)系:0 ?tan = = (2—1)?0seds???20ers?當(dāng)凸輪逆時(shí)針轉(zhuǎn)動(dòng)、從動(dòng)件偏于凸輪軸心左側(cè)或當(dāng)凸輪順時(shí)針轉(zhuǎn)動(dòng),從動(dòng)件偏于凸輪軸心右側(cè)時(shí),壓力角的計(jì)算公式:tan = (2—2)?20ersds???商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)6由計(jì)算公式可知壓力角和基圓半徑兩者是互相制約的,在一般情況下,為了保證設(shè)計(jì)的凸輪機(jī)構(gòu)既有較好的傳力特性又具有較緊湊的尺寸,設(shè)計(jì)時(shí)兩者應(yīng)同時(shí)考慮。為了保證凸輪機(jī)構(gòu)順利工作,規(guī)定了壓力角的許用值 ,在使???的前提下,選取盡可能小的基圓半徑。推薦推程的許用壓力角為:移????max動(dòng)推桿 =30 ~38 ;當(dāng)要求凸輪尺寸盡可能小時(shí)可取 =45 ;擺動(dòng)推桿0 0=40 ~45 ;回程時(shí),由于推桿通常受力較小而無自鎖問題,故許用壓力角可以取大一點(diǎn),通常取 =70 ~80 。???0在實(shí)際工作中,一般都是先根據(jù)具體情況預(yù)選一個(gè)凸輪的基圓半徑,待凸輪輪廓曲線設(shè)計(jì)完成后,在檢查其最大壓力角是否滿足 。????max2.2.2 凸輪機(jī)構(gòu)的偏距由式(2 —1)和式 (2—2)可看出,凸輪的轉(zhuǎn)動(dòng)方向和從動(dòng)件的偏置方向不同,增大偏距。壓力角的變化就不同。若推程壓力角減小,則回程壓力角將增大,即通過增加偏距來減小推程壓力角,是以增大回程壓力角為代價(jià)的。在設(shè)計(jì)凸輪機(jī)構(gòu)時(shí),如果壓力角超過了許用值、而機(jī)械的結(jié)構(gòu)空間又不允許增大基圓半徑,則可通過選取從動(dòng)件適當(dāng)?shù)钠梅较騺慝@取較小的推程壓力角。即在移動(dòng)滾子從動(dòng)件盤形凸輪機(jī)構(gòu)的情況下,選擇從動(dòng)件偏置的主要目的是為了減小機(jī)構(gòu)推程時(shí)的壓力角。從動(dòng)件偏置方向選擇的原則是:若凸輪逆時(shí)針回轉(zhuǎn),則應(yīng)使從動(dòng)件軸線偏于凸輪軸心右側(cè);若凸輪順時(shí)針回轉(zhuǎn),則應(yīng)使從動(dòng)件軸線偏于凸輪軸心左側(cè)。2.2.3 凸輪滾子半徑當(dāng)凸輪廓線為內(nèi)凹廓線時(shí),實(shí)際廓線的曲率半徑 、理論廓線的曲率半徑a?、滾子半徑 r 三者之間有如下的關(guān)系: = +r 。而當(dāng)凸輪廓線為外凸廓? ar線時(shí),實(shí)際廓線的曲率半徑 、理論廓線的曲率半徑 、滾子半徑 r 三者之a(chǎn)?間的關(guān)系是 = ﹣r ,當(dāng) =r 時(shí),則 =0,即實(shí)際廓線將出現(xiàn)尖點(diǎn),由于ara尖點(diǎn)處極易磨損,故不能實(shí)用;若 r ,則 0,這時(shí)實(shí)際廓線將出現(xiàn)交叉,r?當(dāng)進(jìn)行加工時(shí),交點(diǎn)以外的部分將被刀具切去,使凸輪廓線產(chǎn)生過度切割,致使從動(dòng)件不能準(zhǔn)確地實(shí)現(xiàn)預(yù)期的運(yùn)動(dòng)規(guī)律,這種現(xiàn)象稱為運(yùn)動(dòng)失真。為了避免凸輪實(shí)際廓線產(chǎn)生過度切割,有兩種途徑:一是減小滾子半徑 r ;二是增大理論輪廓線的最小曲率半徑 。min?實(shí)際凸輪時(shí)應(yīng)保證凸輪實(shí)際廓線的最小曲率半徑不小于某一許用值。= ﹣ r (2.3)mina?i??a?一般取 =3~5(mm)用解析法設(shè)計(jì)凸輪機(jī)構(gòu)時(shí),通常是先根據(jù)機(jī)構(gòu)和強(qiáng)度條件選擇滾子半徑r ,然后校核 = ﹣r ,若不滿足,則應(yīng)增大基圓半徑重新設(shè)計(jì)。minai???a2 凸輪機(jī)構(gòu)設(shè)計(jì)分析7 2.3 凸輪輪廓設(shè)計(jì)實(shí)現(xiàn)從動(dòng)件運(yùn)動(dòng)規(guī)律主要依賴于凸輪輪廓曲線形狀,因而輪廓曲線設(shè)計(jì)是凸輪機(jī)構(gòu)設(shè)計(jì)中的重要環(huán)節(jié)。凸輪機(jī)構(gòu)設(shè)計(jì)的主要任務(wù)便是凸輪輪廓曲線的設(shè)計(jì)。傳統(tǒng)的凸輪輪廓設(shè)計(jì)方法通常采用作圖法或解析計(jì)算的方法描點(diǎn)。作圖法雖簡(jiǎn)便易行,但其效率低,繪出的凸輪輪廓不夠準(zhǔn)確。所謂用解析法設(shè)計(jì)輪廓線,就是根據(jù)人們所要求的從動(dòng)件的運(yùn)動(dòng)規(guī)律和已知的機(jī)構(gòu)參數(shù),求出凸輪廓線的方程式,并精確地計(jì)算一出輪廓線上各點(diǎn)的坐標(biāo)值。解析法繪出的凸輪輪廓誤差相對(duì)較小,但計(jì)算量大。目前精確設(shè)計(jì)凸輪輪廓的方法有包絡(luò)法、速度瞬心法、等距曲面法等等。包絡(luò)法利用凸輪和從動(dòng)件的幾何關(guān)系導(dǎo)出接觸點(diǎn)的軌跡方程;速度瞬心法利用凸輪和從動(dòng)件瞬時(shí)速度中心確定凸輪和從動(dòng)件在某一瞬時(shí)接觸點(diǎn)的位置。在滾子從動(dòng)件盤形凸輪機(jī)構(gòu)中,凸輪的實(shí)際廓線是以理論廓線上各點(diǎn)為圓心、作一系列滾子圓,然后作該圓族的包絡(luò)線得到的。因此,實(shí)際廓線與理論廓線在法線方向處處等距,該距離均等于滾子半徑。下面介紹的是滾子擺動(dòng)從動(dòng)件凸輪輪廓曲線參數(shù)方程的建立:圖 2—1 擺動(dòng)滾子從動(dòng)件盤形凸輪機(jī)構(gòu)圖 2—1 所示為一擺動(dòng)滾子從動(dòng)件盤形凸輪機(jī)構(gòu)。已知凸輪機(jī)構(gòu)轉(zhuǎn)動(dòng)軸心O 與擺桿擺動(dòng)軸心 A 間的中心距為 a,擺桿長(zhǎng)度為 l,選取直角坐標(biāo)系 XOY0如圖 2—1 所示。當(dāng)從動(dòng)件處于起始位置時(shí),滾子中心處于 B 點(diǎn),擺桿與連心0線 OA 之間的夾角為 ;當(dāng)凸輪轉(zhuǎn)過 角后,從動(dòng)件擺過 角。由反轉(zhuǎn)法原理00???作圖可以看出,此時(shí)滾子中心將處于 B 點(diǎn)。由圖可知,B 點(diǎn)的坐標(biāo)(x,y)分別為:x=asin ﹣lsin( + + )?0y=acos ﹣lcos( + + ) (2.4)?從動(dòng)件凸輪機(jī)構(gòu)中,凸輪的實(shí)際輪廓線是以理論輪廓線上各點(diǎn)為圓心作一系列滾子圓,然后作該圓族的包絡(luò)線得到的。因此,實(shí)際輪廓線與理論輪廓線在法線方向上處處等距,該距離均等于滾子半徑。所以如果已知理論輪廓線上任意一點(diǎn) B 的坐標(biāo)(x,y)時(shí),只要沿理論輪廓線在該點(diǎn)的法線方向取距離為商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)8r ,即可得到實(shí)際輪廓線上相應(yīng)點(diǎn) B′的坐標(biāo)值(x′,y′)。理論輪廓線上 B 點(diǎn)處的法線的斜率為tan = = (2.5)?yxd?)(?dyx實(shí)際輪廓線上對(duì)應(yīng)點(diǎn) B′的坐標(biāo)可由下式求出:x′=x r cos?y′=y r sin (2.6)?其中,cos ,sin 可由公式(2.5)求的:cos =?22)(???dyx??sin = (2.7)?22)(???dyx?將式(2.7)代入式(2.6)得到:x′=x r?22)(???dyx?y′=y r (2.8)?22)(???dyx?式(2.8)即為凸輪實(shí)際輪廓曲線方程。式中“+”號(hào)用于外包絡(luò)線,“-”號(hào)用于內(nèi)包絡(luò)線。2.4 機(jī)構(gòu)簡(jiǎn)介本文要求機(jī)構(gòu)輸出端能實(shí)現(xiàn)升—?!亍5耐鶑?fù)運(yùn)動(dòng),并要求行程的起始和終止位置加速度無突變,加速度曲線連續(xù),無柔性沖擊,運(yùn)轉(zhuǎn)平穩(wěn)。為了達(dá)到這個(gè)要求,本文采用的方案為凸輪機(jī)構(gòu)。根據(jù)機(jī)構(gòu)運(yùn)動(dòng)的要求和凸輪機(jī)構(gòu)從動(dòng)件運(yùn)動(dòng)規(guī)律的選取原則,本文選取的凸輪機(jī)構(gòu)從動(dòng)件的運(yùn)動(dòng)規(guī)律為正弦加速度規(guī)律。但正弦加速度運(yùn)動(dòng)規(guī)律用于升—停—回—停運(yùn)動(dòng)時(shí),在推程與回程2 凸輪機(jī)構(gòu)設(shè)計(jì)分析9 的連接點(diǎn)處,躍度從有限的正值變?yōu)樨?fù)值,因而加速度曲線不連續(xù)。為此本為選取的凸輪機(jī)構(gòu)從動(dòng)件的運(yùn)動(dòng)規(guī)律為修正正弦加速度規(guī)律。在設(shè)計(jì)具體的凸輪機(jī)構(gòu)時(shí),本文考慮了兩種方案:第一種是滑塊直接與凸輪連接的空間凸輪機(jī)構(gòu),第二種是凸輪與滑塊并排的平面溝槽凸輪機(jī)構(gòu)。考慮到安裝尺寸和裝配要求,本文選取第二種方案。在第二種方案中滑塊和凸輪機(jī)構(gòu)是并排的,不易連接,因此在兩者間加了個(gè)連桿。具體的原理示意圖如圖2—2 所示:圖 2—2 擺動(dòng)滾子從動(dòng)件平面槽凸輪連桿組合機(jī)構(gòu)原理示意圖這個(gè)機(jī)構(gòu)由兩部分組成:溝槽凸輪和連桿滑塊機(jī)構(gòu)。其中主動(dòng)件為由電動(dòng)機(jī)驅(qū)動(dòng)的溝槽凸輪,從動(dòng)件為由溝槽凸輪機(jī)構(gòu)驅(qū)動(dòng)連桿滑塊機(jī)構(gòu)中的擺桿,運(yùn)動(dòng)輸出端為滑塊。其中OB=245mm、 OD=550mm、AB=220mm、BC=380mm、CD=135mm。由原理示意圖可作出擺動(dòng)滾子從動(dòng)件平面槽凸輪連桿組合機(jī)構(gòu)(以后簡(jiǎn)稱為溝槽凸輪機(jī)構(gòu))的機(jī)構(gòu)簡(jiǎn)圖。機(jī)構(gòu)簡(jiǎn)圖如圖 2—3 所示:圖 2—3 溝槽凸輪機(jī)構(gòu)機(jī)構(gòu)簡(jiǎn)圖2.5 本章小結(jié)(1)分析了從動(dòng)件基本運(yùn)動(dòng)規(guī)律和組合運(yùn)動(dòng)規(guī)律,歸納了運(yùn)動(dòng)規(guī)律選取的原則。(2)介紹了常用凸輪機(jī)構(gòu)壓力角、基圓半徑、偏距和滾子半徑等基本尺寸的設(shè)計(jì)要求。(3)對(duì)凸輪輪廓曲線設(shè)計(jì)進(jìn)行簡(jiǎn)單的分析,列出了凸輪輪廓曲線方程。商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)103 凸輪機(jī)構(gòu)的實(shí)體建模與裝配3.1 三維軟件簡(jiǎn)介在目前的三維造型軟件領(lǐng)域中占有著重要地位,并作為當(dāng)今世界機(jī)械CAD/CAE/CAM 領(lǐng)域的新標(biāo)準(zhǔn)而得到業(yè)界的認(rèn)可和推廣,是現(xiàn)今最成功的CAD/CAM 軟件之一。三維第一個(gè)提出了參數(shù)化設(shè)計(jì)的概念,并且采用了單一數(shù)據(jù)庫(kù)來解決特征的相關(guān)性問題。另外,它采用模塊化方式,用戶可以根據(jù)自身的需要進(jìn)行選擇,而不必安裝所有模塊。三維的基于特征方式,能夠?qū)⒃O(shè)計(jì)至生產(chǎn)全過程集成到一起,實(shí)現(xiàn)并行工程設(shè)計(jì)。它不但可以應(yīng)用于工作站,而且也可以應(yīng)用到單機(jī)上。三維采用了模塊方式,可以分別進(jìn)行草圖繪制、零件制作、裝配設(shè)計(jì)、鈑金設(shè)計(jì)、加工處理等,保證用戶可以按照自己的需要進(jìn)行選擇使用。三維是軟件包,并非模塊,它是該系統(tǒng)的基本部分,其中功能包括參數(shù)化功能定義、實(shí)體零件及組裝造型,三維上色實(shí)體或線框造型棚完整工程圖產(chǎn)生及不同視圖(三維造型還可移動(dòng),放大或縮小和旋轉(zhuǎn))。三維是一個(gè)功能定義系統(tǒng),即造型是通過各種不同的設(shè)計(jì)專用功能來實(shí)現(xiàn),其中包括:筋(Ribs)、槽(Slots )、倒角(Chamfers)和抽空(Shells)等,采用這種手段來建立形體,對(duì)于使用者來說是更自然,更直觀,無需采用復(fù)雜的幾何設(shè)計(jì)方式。3.2 零部件的實(shí)體建模(1)溝槽凸輪的建模溝槽凸輪零件的三維實(shí)體模型如圖 3—1 所示:圖 3—1 溝槽凸輪(2)擺桿的建模擺桿零件的三維實(shí)體模型如圖 3—2 所示:3 凸輪機(jī)構(gòu)的實(shí)體建模與裝配11 圖 3—2 擺桿(3)連桿的建模連桿零件的三維實(shí)體模型如圖 3—3 所示:圖 3—3 連桿(4)滑塊的建模滑塊零件的三維實(shí)體模型如圖 3—4 所示:圖 3—4 滑塊(5)機(jī)架的建模機(jī)架零件的三維實(shí)體模型如圖 3—5 所示:圖 3—5 機(jī)架3.3 裝配原理簡(jiǎn)介與裝配模型的建立3.3.1 三維仿真裝配原理介紹(1)裝配模型的配合聯(lián)接信息商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)12裝配體的配合聯(lián)接信息即為構(gòu)成裝配體的所有零部件間的互相關(guān)聯(lián)的信息,它包括三維幾何約束和拓?fù)渎?lián)接關(guān)系。三維幾何約束就是裝配體內(nèi)各零部件的幾何配合關(guān)系,它把零部件約束在某個(gè)三維幾何空間中,使這些零部件只能在此特定的三維空間中或固定或運(yùn)動(dòng)。裝配體中的各個(gè)零件是不可能孤立存在的,它總是和周圍的零件有聯(lián)系,各個(gè)零部件是有機(jī)的統(tǒng)一在一起的。只有這樣,裝配體才能完成人們賦予它的預(yù)期功能。零部件間的這種關(guān)聯(lián)性和有機(jī)統(tǒng)一性體現(xiàn)于各個(gè)零部件間的約束之中。這些約束包括設(shè)計(jì)變量約束和三維幾何約束,設(shè)計(jì)變量約束控制裝配體中零件的實(shí)體,三維幾何約束確定零件的位置。部件和部件之間的幾何空間關(guān)系籠統(tǒng)來說是一種拓?fù)渎?lián)接關(guān)系,它描述的是一個(gè)零件在另一個(gè)零件的內(nèi)部、外部、上面、下面等的定性關(guān)系和它們相互之間的距離、角度等定量關(guān)系。這種關(guān)系可以通過約束關(guān)系來描述,這種約束關(guān)系最終反映到零件的最基本的元素上:一個(gè)裝配約束作用于兩個(gè)零件,實(shí)質(zhì)上就是約束分屬于兩個(gè)零件上的兩個(gè)幾何元素,這些幾何元素主要有點(diǎn)、直線、二次曲線、平面、二次曲面等,它可以是零件上實(shí)際存在的元素,也可以是零件的延伸或擴(kuò)展,或者說是零件的虛擬部分,如基準(zhǔn)和參考元素等。對(duì)這些虛擬元素的約束其實(shí)也就是對(duì)實(shí)體零件的約束。上面我們論述過,點(diǎn)、線、面等幾何元素之間的關(guān)系又存在著定性關(guān)系和定量關(guān)系兩種,所以我們又把約束分為定性約束和定量約束。定性約束表示零件間的一種配合性質(zhì),如兩平面共面,兩軸同線等,是一種零件接觸的關(guān)系,不能用數(shù)量來描述;定量約束表示零件之間的一種配合量。如兩平面的距離、兩線間的夾角等,能用數(shù)量來表達(dá)。定量約束有時(shí)也隱含著定性約束,如兩平面間的距離約束首先必須要求兩平面平行,才可能有平面之間的距離,這種平行約束就是一種定性約束。定性約束不能修改(Modify),只能重新定義(Redefine);定量約束的量可以修改,這種定量約束的可變性就是三維幾何約束的動(dòng)態(tài)性。3 凸輪機(jī)構(gòu)的實(shí)體建模與裝配13 表 3—1 面向工程的約束分類約束類型 約束量 約束元素同向共面(Mate) 無 平面,基準(zhǔn)面非接觸共面(Mate Offset) 有 平面,基準(zhǔn)面同向?qū)R(Align) 無 平面,基準(zhǔn)面,邊,軸線同向距離對(duì)齊(Align Offset)有 平面,基準(zhǔn)面,邊,軸線坐標(biāo)系對(duì)齊(Coord Sys) 無 坐標(biāo)系插入(Insert) 無 回轉(zhuǎn)面同向(Orient) 無 平面,基準(zhǔn)面相切(Tangent) 無 平面,基準(zhǔn)面,邊,軸線,回轉(zhuǎn)面點(diǎn)在線上(Pnt on Line) 無 頂點(diǎn),邊,軸線點(diǎn)在面上(Pnt on Srt) 無 頂點(diǎn),平面,基準(zhǔn)面點(diǎn)在邊上(Edge on Srt ) 無 邊,平面,基準(zhǔn)面定性約束包括下面幾種:同向共面、反向共面、共線、共點(diǎn)、線在面內(nèi)、點(diǎn)在線上、點(diǎn)在面上、線面相切;定量約束包括面間距離、面間夾角、線間距離、線間夾角、點(diǎn)點(diǎn)距離、線面距離及夾角、點(diǎn)線距離。我們可以看出,定量約束的量為零時(shí),定量約束就轉(zhuǎn)化為定性約束,這種性質(zhì)使約束可以替代、簡(jiǎn)化、分解。綜合了以上幾種定性和定量的約束,可以將它們歸納成如表所示的面向工程的約束形式,即為三維中提供的裝配約束形式,零部件之間的三維幾何約束信息的總和。三維幾何約束是維系裝配體中各零部件間的空間位置和相對(duì)運(yùn)動(dòng)的紐帶。一般來說,一個(gè)部件的定位必須由兩個(gè)或兩個(gè)以上的三維約束完成。這些約束在建立裝配模型,確定零部件在裝配體中的相對(duì)空間位置時(shí)就建立起來了。它們是裝配模型的重要組成信息之一。(2)裝配模型中的語義信息裝配模型中的語義信息即附加于裝配模型的一些輔助語義信息,它在裝配模型中也同樣具有比較重要的作用。如:把每個(gè)零部件分類,并冠以不同的類別名稱,這樣便于對(duì)不同類別零部件采取不同的處理方法。裝配工藝路徑規(guī)劃模塊可依據(jù)該語義信息按照一定的判別使序列規(guī)劃更合理更具智能型,如遇到的子裝配體是標(biāo)準(zhǔn)件(如軸承)或作為整體的外購(gòu)裝配體,則當(dāng)作不可拆分的零件處理直接拆卸;如遇到聯(lián)接件、緊固件則應(yīng)當(dāng)首先拆卸。這些分類在實(shí)現(xiàn)裝配規(guī)劃時(shí)有利于提高各個(gè)模塊的運(yùn)算效率。還有零件的材料、重量、體積、重商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)14心與熱處理方法等,也是屬于裝配模型中的語義信息。這些信息對(duì)零件的裝配特性有一定的影響,如體積或重量很大的零件其裝配性能差;同樣,體積很小的零件裝配性能也差。(3)裝配規(guī)則裝配規(guī)劃即裝配工藝規(guī)劃形象的描述,就是指裝配過程中按要求制定的裝配計(jì)劃,它研究產(chǎn)品裝配體是用什么工具、沿怎樣的路徑、按照怎樣的次序裝配起來的。裝配規(guī)劃研究的重點(diǎn)是裝配過程設(shè)計(jì)。裝配過程設(shè)計(jì)相當(dāng)復(fù)雜,它不但要受零部件設(shè)計(jì)的幾何和功能的影響,而且受制造、裝配過程以及經(jīng)濟(jì)性的影響。由于裝配設(shè)計(jì)是一個(gè)創(chuàng)造性相當(dāng)強(qiáng)的過程,而目前計(jì)算機(jī)的創(chuàng)造能力仍無法與人的創(chuàng)造能力相比擬,所以,目前的裝配規(guī)劃基本上都是以自動(dòng)裝配規(guī)劃為輔、以計(jì)算機(jī)輔助裝配規(guī)劃為主。用戶在進(jìn)行裝配規(guī)劃時(shí),可以隨意的調(diào)入任意裝配模型進(jìn)行零部件的拆卸與路徑的調(diào)整,并可以根據(jù)個(gè)人的意愿任意的選擇所要拆卸的零部件數(shù)目,如果用戶不想繼承建模者所建立的裝配模型,也可以很方便的打破原有模型的子裝配體等框架進(jìn)行裝配。同時(shí)也可以通過實(shí)時(shí)仿真功能可視化的驗(yàn)證規(guī)劃的合理性與可行性,由于在這個(gè)模塊中采用了一種特殊的動(dòng)畫生成模式,所以在整個(gè)仿真過程中,整個(gè)界面保持了激活狀態(tài),便于用戶隨時(shí)調(diào)整視角進(jìn)行觀察。3.3.2 裝配模型建立(1)設(shè)置工作目錄依次單擊主菜單中的“文件(File)”→“設(shè)置工作目錄(Set Working Directory.) ”命令,在彈出 “選取工作目錄(Select Working Directory)”對(duì)話框中選擇*:\…\結(jié)果,單擊 按鈕。(2) 建立新的裝配文件單擊工具欄中的 (新建)工具,彈出“新建(New)”對(duì)話框,在“類型(Type )”欄選擇“組件(Assembly)”,在“子類型(Sub-type )”欄選擇 “設(shè)計(jì)(Design)”,在“名稱(Name)”處接受默認(rèn)名稱“asm0001”,取消對(duì)“使用缺省模板(Use default template )”復(fù)選框的勾選,單擊 按鈕。在出現(xiàn)“新文件選項(xiàng)(New File Options)”對(duì)話框中選擇“mmns_asm_design”作為模板,單擊 按鈕,即進(jìn)入裝配環(huán)境,此時(shí)工作區(qū)顯示坐標(biāo)系 ASM_DEF_CSYS 及基準(zhǔn)平面ASM_FRONT、ASM_RIGHT、ASM_TOP。(3)裝配零件單擊工具欄中的 (裝配)工具,在彈出的 “打開(Open)”對(duì)話框○ 13 凸輪機(jī)構(gòu)的實(shí)體建模與裝配15 中選擇*:\…\結(jié)果→jijia.prt,單擊 按鈕。在“元件放置(Component Placement)”操控板的對(duì)話欄中單擊“約束(Constraint)”列表,在列表中選擇“缺?。―efault)”項(xiàng),單擊 (確認(rèn))按鈕,完成主體零件的放置,如圖 3—6 所示。圖 3—6 主題零件的放置單擊工具欄中的 (裝配)工具,在彈出的“打開(Open)”對(duì)話框中○ 2選擇*:\…\結(jié)果→cam.prt ,單擊 按鈕。在“元件放置(Component Placement)” 操控板的對(duì)話欄中單擊 “預(yù)定義集( Predefine Set)” 列表,在列表中選擇“銷釘(Pin ) ”選項(xiàng),設(shè)置如圖 3—7 所示的約束。圖 3—7 銷釘約束單擊 (確認(rèn))按鈕,完成凸輪的放置,如圖 3—8 所示。圖 3—8 凸輪的放置單擊工具欄中的 (裝配)工具,在彈出的“打開(Open)”對(duì)話框中○ 3選擇*:\…\結(jié)果→baigan.prt ,單擊 按鈕。在“元件放置(Component Placement)” 操控板的對(duì)話欄中單擊 “預(yù)定義集( Predefine Set)”列表,在列表中選擇“銷釘(Pin ) ”選項(xiàng),設(shè)置如圖 3—9 所示的約束。商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)16圖 3—9 銷釘約束單擊 (確認(rèn))按鈕,完成擺桿的放置,如圖 3—10 所示。圖 3—10 擺桿的放置單擊工具欄中的 (裝配)工具,在彈出的 “打開( Open)”對(duì)話框中○ 4選擇*:\…\結(jié)果→liangan.prt ,單擊 按鈕。在“元件放置(Component Placement)”操控板的對(duì)話欄中單擊“預(yù)定義集(Predefine Set)”列表,在列表中選擇“銷釘(Pin)”選項(xiàng),設(shè)置如圖 3—11 所示的約束。單擊 (確認(rèn))按鈕,完成連桿的放置,如圖 3—12 所示。圖 3—11 銷釘約束圖 3—12 連桿的放置單擊工具欄中的 (裝配)工具,在彈出的 “打開( Open)”對(duì)話框中○ 5選擇*:\…\結(jié)果→huakuai.prt ,單擊 按鈕。在“元件放置(Component Placement)”操控板的對(duì)話欄中單擊“預(yù)定義集(Predefine Set)”列表,在列表中選擇“銷釘(Pin)”選項(xiàng),設(shè)置如圖 3—13 所示的約束。3 凸輪機(jī)構(gòu)的實(shí)體建模與裝配17 圖 3—13 銷釘約束在“元件放置(Component Placement)”操控板中單擊“放置(Placement) ”上滑面板,單擊該上滑面板中的 “新設(shè)置(New Set)”,然后在對(duì)話欄中單擊“預(yù)定義集(Predefine Set)” 列表,在列表中選擇“滑動(dòng)桿(Slider )”選項(xiàng),設(shè)置如圖 3—14 所示的約束。單擊 (確認(rèn))按鈕,完成滑塊的放置,如圖 3—15 所示。圖 3—14 滑動(dòng)桿約束圖 3—15 滑塊的放置3.4 本章小結(jié)本章首先就三維軟件進(jìn)行了簡(jiǎn)單的介紹,然后又對(duì)溝槽凸輪機(jī)構(gòu)進(jìn)行了簡(jiǎn)單的分析,最后進(jìn)行機(jī)構(gòu)部零件的實(shí)體建模和裝配。商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)184 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真4.1 計(jì)算機(jī)仿真概述4.1.1 計(jì)算機(jī)仿真的基本概念及特點(diǎn)計(jì)算機(jī)仿真(Computer Simulation)是指對(duì)于某個(gè)待研究的系統(tǒng)模型建立其仿真模型進(jìn)而在子計(jì)算機(jī)上對(duì)該仿真模型進(jìn)行模擬實(shí)驗(yàn)(仿真實(shí)驗(yàn))研究的過程。所以計(jì)算機(jī)仿真是通過對(duì)系統(tǒng)模型的實(shí)驗(yàn)去研究一個(gè)真實(shí)系統(tǒng)。從 20 世紀(jì) 80年代后期開始,計(jì)算機(jī)仿真在諸多方面都發(fā)生了十分重大的轉(zhuǎn)變:仿真研究的對(duì)象己由對(duì)連續(xù)系統(tǒng)轉(zhuǎn)向離散事件系統(tǒng);由重視實(shí)驗(yàn)轉(zhuǎn)向重視建模與結(jié)果分析:由強(qiáng)調(diào)并重視與人工智能結(jié)合轉(zhuǎn)向強(qiáng)調(diào)與圖形技術(shù)和對(duì)象技術(shù)結(jié)合,使仿真的交互性大大增強(qiáng)。就應(yīng)用領(lǐng)域方面而言,計(jì)算機(jī)仿真己由航空航天轉(zhuǎn)向制造業(yè),并從研究制造對(duì)象(產(chǎn)品) 的動(dòng)力學(xué)、運(yùn)動(dòng)學(xué)特性及加工、裝配過程,擴(kuò)大到研究制造系統(tǒng)的設(shè)計(jì)和運(yùn)行,并進(jìn)一步擴(kuò)大到后勤供應(yīng)、庫(kù)存管理、產(chǎn)品開發(fā)過程的組織、產(chǎn)品測(cè)試等,涉及到企業(yè)制造活動(dòng)的各個(gè)方面?,F(xiàn)代制造的分布性也使得計(jì)算機(jī)仿真與網(wǎng)絡(luò)技術(shù)相結(jié)合,出現(xiàn)了分布式仿真技術(shù)。計(jì)算機(jī)仿真技術(shù)集成了計(jì)算機(jī)技術(shù)、網(wǎng)絡(luò)技術(shù)、圖形圖像技術(shù)、面向?qū)ο蠹夹g(shù)、多媒體、軟件工程、信息處理、自動(dòng)控制等多個(gè)高新技術(shù)領(lǐng)域的知識(shí)。計(jì)算機(jī)仿真技術(shù)是以數(shù)學(xué)理論、相似原理、信息技術(shù)、系統(tǒng)技術(shù)及其應(yīng)用領(lǐng)域有關(guān)的專業(yè)技術(shù)為基礎(chǔ),以計(jì)算機(jī)和各種物理效應(yīng)設(shè)備為工具,利用系統(tǒng)模型對(duì)實(shí)際的或設(shè)想的系統(tǒng)進(jìn)行試驗(yàn)研究的一門綜合性技術(shù)。計(jì)算機(jī)仿真技術(shù)還有以下幾個(gè)優(yōu)點(diǎn):(1)模型參數(shù)任意調(diào)整:模型參數(shù)可根據(jù)要求通過計(jì)算機(jī)程序隨時(shí)進(jìn)行調(diào)整、修改或補(bǔ)充,使人們能掌握各種可能的仿真結(jié)果,為進(jìn)一步完善研究方案提供了極大的方便。這使得計(jì)算機(jī)仿真與通常的實(shí)物實(shí)驗(yàn)相比,具有運(yùn)行費(fèi)用低、無風(fēng)險(xiǎn)以及方便靈活等優(yōu)點(diǎn)。(2)系統(tǒng)模型快速求解:利用計(jì)算機(jī),在較短時(shí)間內(nèi)就能知道仿真運(yùn)算的結(jié)果( 數(shù)據(jù)或圖像) 。(3)運(yùn)算結(jié)果可靠:只要系統(tǒng)模型、仿真模型和仿真程序是科學(xué)合理的,那么計(jì)算機(jī)的運(yùn)算結(jié)果一定是準(zhǔn)確無誤的。正是基于這些優(yōu)點(diǎn),計(jì)算機(jī)仿真方法能優(yōu)化系統(tǒng)設(shè)計(jì),降低實(shí)驗(yàn)成本,減少失敗風(fēng)險(xiǎn),提高預(yù)測(cè)能力。目前,無論在科學(xué)研究還是技術(shù)開發(fā)或工業(yè)設(shè)計(jì)中,計(jì)算機(jī)仿真方法都顯示出強(qiáng)大的威力,已成為人們研究復(fù)雜系統(tǒng)時(shí)不可或缺的一種手段。4.1.2 計(jì)算機(jī)仿真技術(shù)在制造業(yè)中的應(yīng)用計(jì)算機(jī)仿真技術(shù)作為一門新興的高科技技術(shù),在制造業(yè)產(chǎn)品設(shè)計(jì)和制造,尤其在航空、航天、國(guó)防及其他大規(guī)模復(fù)雜系統(tǒng)的研制開發(fā)過程中,一直是不4 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真19 可缺少的工具,它在減少損失、節(jié)約經(jīng)費(fèi)、縮短開發(fā)周期、提高產(chǎn)品質(zhì)量等方面發(fā)揮了巨大的作用。在從產(chǎn)品的設(shè)計(jì)、制造至測(cè)試維護(hù)的整個(gè)生命周期中,計(jì)算機(jī)仿真技術(shù)貫穿始終。(1)虛擬制造(VM)虛擬制造采用計(jì)算機(jī)虛擬仿真技術(shù),以新產(chǎn)品及其制造系統(tǒng)的全局最優(yōu)化為目標(biāo),通過仿真模型,在計(jì)算機(jī)上仿真生產(chǎn)全過程,實(shí)現(xiàn)產(chǎn)品的工藝規(guī)程、加工制造、裝配和調(diào)試,預(yù)估產(chǎn)品的功能、性能和加工性等方面可能存在的問題,從而更加有效地組織生產(chǎn),增強(qiáng)決策與控制水平,縮短產(chǎn)品開發(fā)周期,提高產(chǎn)品質(zhì)量。目前虛擬制造技術(shù)的研究和應(yīng)用主要側(cè)重于運(yùn)動(dòng)仿真、加工模擬、裝配檢查、性能評(píng)測(cè)等方面,其核心技術(shù)包括虛擬現(xiàn)實(shí)技術(shù)、仿真技術(shù)、建模技術(shù)和可制造性評(píng)價(jià)。(2)虛擬產(chǎn)品開發(fā)(VPD)虛擬產(chǎn)品開發(fā)是實(shí)際產(chǎn)品開發(fā)過程在計(jì)算機(jī)上的本質(zhì)實(shí)現(xiàn),即采用計(jì)算機(jī)仿真與虛擬現(xiàn)實(shí)技術(shù),在計(jì)算機(jī)上群組協(xié)同工作,實(shí)現(xiàn)產(chǎn)品的設(shè)計(jì)、工藝規(guī)劃、加工制造、性能分析、質(zhì)量檢驗(yàn)等。(3)虛擬樣機(jī)虛擬樣機(jī)技術(shù)是指在產(chǎn)品設(shè)計(jì)開發(fā)過程中,將分散的零部件設(shè)計(jì)和分析技術(shù)揉合在一起,在計(jì)算機(jī)上建造出產(chǎn)品的整體模型,并對(duì)該產(chǎn)品在投入使用后的各種工況進(jìn)行仿真分析,預(yù)測(cè)產(chǎn)品的整體性能,進(jìn)而改進(jìn)產(chǎn)品設(shè)計(jì)、提高產(chǎn)品性能的一種新技術(shù)。虛擬樣機(jī)技術(shù)采用了計(jì)算機(jī)仿真與虛擬技術(shù),在計(jì)算機(jī)上通過 CAD/CAM/CAE 等技術(shù)把產(chǎn)品的資料集成到一個(gè)可視化的環(huán)境中,實(shí)現(xiàn)產(chǎn)品的仿真、分析。虛擬樣機(jī)技術(shù)的應(yīng)用貫串在整個(gè)設(shè)計(jì)過程當(dāng)中,它可以用在概念設(shè)計(jì)和方案論證中。用虛擬樣機(jī)來代替物理樣機(jī)驗(yàn)證設(shè)計(jì)時(shí),不但可以提高產(chǎn)品設(shè)計(jì)質(zhì)量和效率,而且大幅度地縮短產(chǎn)品研制周期和費(fèi)用。4.2 三維運(yùn)動(dòng)仿真簡(jiǎn)介4.2.1 三維運(yùn)動(dòng)仿真的特點(diǎn)在三維中,我們可以通過對(duì)機(jī)構(gòu)添加運(yùn)動(dòng)副、驅(qū)動(dòng)器使其運(yùn)動(dòng)起來,以實(shí)現(xiàn)機(jī)構(gòu)的運(yùn)動(dòng)仿真。而機(jī)構(gòu)又是由構(gòu)件組合而成的,其中每個(gè)構(gòu)件都是以一定的方式至少與另一個(gè)構(gòu)件相連接,這種連接既使兩個(gè)構(gòu)件直接接觸,又使兩個(gè)構(gòu)件產(chǎn)生一定的相對(duì)運(yùn)動(dòng)。創(chuàng)建機(jī)構(gòu)的過程與零件裝配的過程極為相似。與其他的軟件相比較,用三維做運(yùn)動(dòng)仿真的主要特點(diǎn)如下:(1)運(yùn)動(dòng)輸入商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)20運(yùn)動(dòng)輸入(Motion Input)是賦給運(yùn)動(dòng)副控制運(yùn)動(dòng)的運(yùn)動(dòng)副參數(shù)。當(dāng)創(chuàng)建或編輯調(diào)用一個(gè)運(yùn)動(dòng)副時(shí),就會(huì)彈出運(yùn)動(dòng)驅(qū)動(dòng)對(duì)話框。使用者可以根據(jù)需要選擇無運(yùn)動(dòng)驅(qū)動(dòng)、運(yùn)動(dòng)函數(shù)、恒定運(yùn)動(dòng)、簡(jiǎn)諧運(yùn)動(dòng)驅(qū)動(dòng)以及關(guān)節(jié)運(yùn)動(dòng)驅(qū)動(dòng)等 5 種可能的運(yùn)動(dòng)驅(qū)動(dòng)中的一種。(2)關(guān)節(jié)運(yùn)動(dòng)分析當(dāng)使用者只需要了解某一關(guān)節(jié)的運(yùn)動(dòng)情況時(shí),可以選擇分析工具條中的關(guān)節(jié)運(yùn)動(dòng)分析圖標(biāo),并輸入步長(zhǎng)和步數(shù)進(jìn)行分析。(3)靜力學(xué)分析靜力學(xué)分析(Static Analysis)將模型移動(dòng)到平衡位置,并輸入運(yùn)動(dòng)副上的反作用力。當(dāng)選擇靜力學(xué)分析后,時(shí)間和步數(shù)的輸入項(xiàng)將不可選。(4)機(jī)構(gòu)運(yùn)動(dòng)學(xué)/機(jī)構(gòu)動(dòng)力學(xué)分析機(jī)構(gòu)運(yùn)動(dòng)學(xué)/機(jī)構(gòu)動(dòng)力學(xué)分析(Kinematic/Dynamci Analysis)按輸入的時(shí)間和步數(shù)進(jìn)行仿真分析。時(shí)間值代表運(yùn)動(dòng)分析模型所分析的時(shí)間段內(nèi)的時(shí)間,步數(shù)值代表在此時(shí)間段內(nèi)分幾個(gè)瞬態(tài)位置進(jìn)行分析或顯示。(5)設(shè)計(jì)位置和裝配位置模型的裝配位置可能不同于模型的設(shè)計(jì)位置。裝配位置與設(shè)計(jì)位置的區(qū)別是:裝配位置是在裝配機(jī)構(gòu)時(shí)產(chǎn)生的,與使用者裝配時(shí)所選取的配合面有關(guān);而設(shè)計(jì)位置是使用者在運(yùn)動(dòng)仿真前人為設(shè)置的,使用者可以根據(jù)需要進(jìn)行設(shè)定或者調(diào)節(jié)設(shè)計(jì)位置。(6)多種形式輸出三維運(yùn)動(dòng)仿真的結(jié)果可以以多種格式進(jìn)行輸出,這些形式主要有MPEG、Animated GFI 以及 VRML 等。(7)預(yù)測(cè)工程和工程判斷準(zhǔn)則三維的運(yùn)動(dòng)分析模塊是用于預(yù)測(cè)工程的應(yīng)用軟件。就是說,在許多情況下,在機(jī)構(gòu)進(jìn)行生產(chǎn)前或者說在機(jī)構(gòu)真正生產(chǎn)出來前,用該軟件預(yù)測(cè)機(jī)構(gòu)的運(yùn)動(dòng)特性,即它類似于有限元分析三維有限元分析模塊)和注塑流動(dòng)分析(三維塑料零件分析顧問模塊) 。這些預(yù)測(cè)都是基于非常復(fù)雜的數(shù)學(xué)理論以及公認(rèn)的物理和工程原理。4.2.2 三維運(yùn)動(dòng)仿真的基本術(shù)語在機(jī)構(gòu)運(yùn)動(dòng)仿真過程中經(jīng)常會(huì)用到以下的基本術(shù)語:(1)放置約束:件中放置元件并限制該元件是否運(yùn)動(dòng)的圖元。(2)自由度:構(gòu)件所具有的獨(dú)立運(yùn)動(dòng)的數(shù)目(或是確定構(gòu)件位置所需要的獨(dú)立參變量的數(shù)目)稱為構(gòu)件的自由度。(3)主體:元件或相對(duì)不動(dòng)的一組元件。4 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真21 (4)連接:成為聯(lián)接。它是定義并限制相對(duì)運(yùn)動(dòng)的構(gòu)件的關(guān)系。聯(lián)接的作用是約束構(gòu)件之間的相對(duì)運(yùn)動(dòng),減少機(jī)構(gòu)的總自由度。(5)環(huán)連接:加到運(yùn)動(dòng)環(huán)中的最后一個(gè)連接。(6)接頭:連接類型,例如:銷連接、滑塊桿連接等。乃基礎(chǔ) :即大地或者機(jī)架,它是一個(gè)固定不移動(dòng)的零件。其他構(gòu)件相對(duì)于基礎(chǔ)運(yùn)動(dòng)。在一個(gè)運(yùn)動(dòng)仿真機(jī)構(gòu)中,可以定義多個(gè)基礎(chǔ)。(7)運(yùn)動(dòng):從驅(qū)動(dòng)器的構(gòu)件運(yùn)動(dòng)方式。(8)拖動(dòng):鼠標(biāo)點(diǎn)取并在屏幕上移動(dòng)機(jī)構(gòu)。(9)驅(qū)動(dòng)器:義一個(gè)構(gòu)件相對(duì)于另一個(gè)構(gòu)件的運(yùn)動(dòng)方式??梢栽诮宇^或幾何圖元上放置驅(qū)動(dòng)器,并指定構(gòu)件之間的位置、速度或加速度運(yùn)動(dòng)。(10)回放:錄并重新演示機(jī)構(gòu)運(yùn)動(dòng)。4.2.3 三維運(yùn)動(dòng)仿真的步驟三維運(yùn)動(dòng)仿真的步驟的流程圖:4.3 凸輪機(jī)構(gòu)的運(yùn)動(dòng)仿真4.3.1 設(shè)置機(jī)構(gòu)環(huán)境依次單擊主菜單中的“應(yīng)用程序(Applications)”→“機(jī)構(gòu)(Mechanism)”命令,進(jìn)入機(jī)構(gòu)運(yùn)動(dòng)仿真環(huán)境,進(jìn)行機(jī)構(gòu)環(huán)境的設(shè)置。(1)定義凸輪機(jī)構(gòu)連接 單擊工具欄中的 (凸輪)工具,系統(tǒng)彈出 “凸輪從動(dòng)機(jī)構(gòu)連接定義(Cam-Follower Connection Definition)”對(duì)話框,在 “凸輪 1(Cam1)”選項(xiàng)卡中鉤選“自動(dòng)選?。ˋuto select)”復(fù)選框,如圖 4—1 所示。商丘工學(xué)院本科畢業(yè)設(shè)計(jì)(論文)22圖 4—1 “凸輪從動(dòng)機(jī)構(gòu)連接定義”對(duì)話框點(diǎn)選如圖 4—2 所示的曲面作為凸輪 1 的曲面,然后單擊“選取(Select)”對(duì)話框中的 按鈕。圖 4—2 凸輪 1 曲面在“凸輪從動(dòng)機(jī)構(gòu)連接定義(Cam-Follower Conn