高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專(zhuān)題五 立體幾何與空間向量 第3講 立體幾何中的向量方法課件.ppt
《高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專(zhuān)題五 立體幾何與空間向量 第3講 立體幾何中的向量方法課件.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專(zhuān)題五 立體幾何與空間向量 第3講 立體幾何中的向量方法課件.ppt(52頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第3講立體幾何中的向量方法 專(zhuān)題五立體幾何與空間向量 高考真題體驗(yàn) 熱點(diǎn)分類(lèi)突破 高考押題精練 欄目索引 高考真題體驗(yàn) 1 2 1 2014 課標(biāo)全國(guó) 直三棱柱ABC A1B1C1中 BCA 90 M N分別是A1B1 A1C1的中點(diǎn) BC CA CC1 則BM與AN所成角的余弦值為 解析方法一補(bǔ)成正方體 利用向量的方法求異面直線(xiàn)所成的角 由于 BCA 90 三棱柱為直三棱柱 且BC CA CC1 可將三棱柱補(bǔ)成正方體 1 2 建立如圖 1 所示空間直角坐標(biāo)系 設(shè)正方體棱長(zhǎng)為2 則可得A 0 0 0 B 2 2 0 M 1 1 2 N 0 1 2 1 2 方法二通過(guò)平行關(guān)系找出兩異面直線(xiàn)的夾角 再根據(jù)余弦定理求解 如圖 2 取BC的中點(diǎn)D 連接MN ND AD 則ND與NA所成的角即為異面直線(xiàn)BM與AN所成的角 答案C 1 2 2 2015 安徽 如圖所示 在多面體A1B1D1DCBA中 四邊形AA1B1B ADD1A1 ABCD均為正方形 E為B1D1的中點(diǎn) 過(guò)A1 D E的平面交CD1于F 1 證明 EF B1C 證明由正方形的性質(zhì)可知A1B1 AB DC 且A1B1 AB DC 所以四邊形A1B1CD為平行四邊形 從而B(niǎo)1C A1D 1 2 又A1D 面A1DE B1C 面A1DE 于是B1C 面A1DE 又B1C 面B1CD1 面A1DE 面B1CD1 EF 所以EF B1C 1 2 2 求二面角E A1D B1的余弦值 解因?yàn)樗倪呅蜛A1B1B ADD1A1 ABCD均為正方形 所以AA1 AB AA1 AD AB AD且AA1 AB AD 1 2 可得點(diǎn)的坐標(biāo)A 0 0 0 B 1 0 0 D 0 1 0 A1 0 0 1 B1 1 0 1 D1 0 1 1 設(shè)面A1DE的法向量n1 r1 s1 t1 1 2 1 1 1 為其一組解 所以可取n1 1 1 1 設(shè)面A1B1CD的法向量n2 r2 s2 t2 1 2 由此同理可得n2 0 1 1 考情考向分析 以空間幾何體為載體考查空間角是高考命題的重點(diǎn) 與空間線(xiàn)面關(guān)系的證明相結(jié)合 熱點(diǎn)為二面角的求解 均以解答的形式進(jìn)行考查 難度主要體現(xiàn)在建立空間直角坐標(biāo)系和準(zhǔn)確計(jì)算上 熱點(diǎn)一利用向量證明平行與垂直 熱點(diǎn)分類(lèi)突破 設(shè)直線(xiàn)l的方向向量為a a1 b1 c1 平面 的法向量分別為 a2 b2 c2 v a3 b3 c3 則有 1 線(xiàn)面平行l(wèi) a a 0 a1a2 b1b2 c1c2 0 2 線(xiàn)面垂直l a a k a1 ka2 b1 kb2 c1 kc2 3 面面平行 v v a2 a3 b2 b3 c2 c3 4 面面垂直 v v 0 a2a3 b2b3 c2c3 0 例1如圖 在直三棱柱ADE BCF中 面ABFE和面ABCD都是正方形且互相垂直 M為AB的中點(diǎn) O為DF的中點(diǎn) 運(yùn)用向量方法證明 1 OM 平面BCF 2 平面MDF 平面EFCD 證明方法一由題意 得AB AD AE兩兩垂直 以A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系 設(shè)正方形邊長(zhǎng)為1 則A 0 0 0 B 1 0 0 C 1 1 0 D 0 1 0 棱柱ADE BCF是直三棱柱 且OM 平面BCF OM 平面BCF 2 設(shè)平面MDF與平面EFCD的一個(gè)法向量分別為n1 x1 y1 z1 n2 x2 y2 z2 同理可得n2 0 1 1 n1 n2 0 平面MDF 平面EFCD 又OM 平面BCF OM 平面BCF 2 由題意知 BF BC BA兩兩垂直 OM CD OM FC 又CD FC C OM 平面EFCD 又OM 平面MDF 平面MDF 平面EFCD 思維升華 用向量知識(shí)證明立體幾何問(wèn)題 仍然離不開(kāi)立體幾何中的定理 如要證明線(xiàn)面平行 只需要證明平面外的一條直線(xiàn)和平面內(nèi)的一條直線(xiàn)平行 即化歸為證明線(xiàn)線(xiàn)平行 用向量方法證明直線(xiàn)a b 只需證明向量a b R 即可 若用直線(xiàn)的方向向量與平面的法向量垂直來(lái)證明線(xiàn)面平行 仍需強(qiáng)調(diào)直線(xiàn)在平面外 跟蹤演練1如圖所示 已知直三棱柱ABC A1B1C1中 ABC為等腰直角三角形 BAC 90 且AB AA1 D E F分別為B1A C1C BC的中點(diǎn) 求證 1 DE 平面ABC 證明如圖建立空間直角坐標(biāo)系A(chǔ) xyz 令A(yù)B AA1 4 則A 0 0 0 E 0 4 2 F 2 2 0 B 4 0 0 B1 4 0 4 取AB中點(diǎn)為N 連接CN 則N 2 0 0 C 0 4 0 D 2 0 2 又 NC 平面ABC DE 平面ABC 故DE 平面ABC 2 B1F 平面AEF 又 AF FE F B1F 平面AEF 熱點(diǎn)二利用空間向量求空間角 設(shè)直線(xiàn)l m的方向向量分別為a a1 b1 c1 b a2 b2 c2 平面 的法向量分別為 a3 b3 c3 v a4 b4 c4 以下相同 1 線(xiàn)線(xiàn)夾角 2 線(xiàn)面夾角 3 面面夾角設(shè)平面 的夾角為 0 1 求平面PAB與平面PCD所成二面角的余弦值 2 點(diǎn)Q是線(xiàn)段BP上的動(dòng)點(diǎn) 當(dāng)直線(xiàn)CQ與DP所成的角最小時(shí) 求線(xiàn)段BQ的長(zhǎng) 則各點(diǎn)的坐標(biāo)為B 1 0 0 C 1 1 0 D 0 2 0 P 0 0 2 1 因?yàn)锳D 平面PAB 設(shè)平面PCD的法向量為m x y z 所以m 1 1 1 是平面PCD的一個(gè)法向量 設(shè)1 2 t t 1 3 此時(shí)直線(xiàn)CQ與DP所成角取得最小值 思維升華 1 運(yùn)用空間向量坐標(biāo)運(yùn)算求空間角的一般步驟 建立恰當(dāng)?shù)目臻g直角坐標(biāo)系 求出相關(guān)點(diǎn)的坐標(biāo) 寫(xiě)出向量坐標(biāo) 結(jié)合公式進(jìn)行論證 計(jì)算 轉(zhuǎn)化為幾何結(jié)論 2 求空間角注意 兩條異面直線(xiàn)所成的角 不一定是直線(xiàn)的方向向量的夾角 即cos cos 兩平面的法向量的夾角不一定是所求的二面角 有可能為兩法向量夾角的補(bǔ)角 直線(xiàn)和平面所成的角的正弦值等于平面法向量與直線(xiàn)方向向量夾角的余弦值的絕對(duì)值 即注意函數(shù)名稱(chēng)的變化 跟蹤演練2 2014 福建 在平面四邊形ABCD中 AB BD CD 1 AB BD CD BD 將 ABD沿BD折起 使得平面ABD 平面BCD 如圖所示 1 求證 AB CD 證明 平面ABD 平面BCD 平面ABD 平面BCD BD AB 平面ABD AB BD AB 平面BCD 又CD 平面BCD AB CD 2 若M為AD中點(diǎn) 求直線(xiàn)AD與平面MBC所成角的正弦值 解過(guò)點(diǎn)B在平面BCD內(nèi)作BE BD 如圖 由 1 知AB 平面BCD BE 平面BCD BD 平面BCD AB BE AB BD 設(shè)平面MBC的法向量n x0 y0 z0 取z0 1 得平面MBC的一個(gè)法向量n 1 1 1 設(shè)直線(xiàn)AD與平面MBC所成角為 熱點(diǎn)三利用空間向量求解探索性問(wèn)題 存在探索性問(wèn)題的基本特征是要判斷在某些確定條件下的某一數(shù)學(xué)對(duì)象 數(shù)值 圖形 函數(shù)等 是否存在或某一結(jié)論是否成立 解決這類(lèi)問(wèn)題的基本策略是先假設(shè)題中的數(shù)學(xué)對(duì)象存在 或結(jié)論成立 或暫且認(rèn)可其中的一部分結(jié)論 然后在這個(gè)前提下進(jìn)行邏輯推理 若由此導(dǎo)出矛盾 則否定假設(shè) 否則 給出肯定結(jié)論 例3如圖 在直三棱柱ABC A1B1C1中 AB BC 2AA1 ABC 90 D是BC的中點(diǎn) 1 求證 A1B 平面ADC1 證明連接A1C 交AC1于點(diǎn)O 連接OD 由ABC A1B1C1是直三棱柱 得四邊形ACC1A1為矩形 O為A1C的中點(diǎn) 又D為BC的中點(diǎn) 所以O(shè)D為 A1BC的中位線(xiàn) 所以A1B OD 因?yàn)镺D 平面ADC1 A1B 平面ADC1 所以A1B 平面ADC1 2 求二面角C1 AD C的余弦值 解由ABC A1B1C1是直三棱柱 且 ABC 90 得BA BC BB1兩兩垂直 以BC BA BB1所在直線(xiàn)分別為x y z軸 建立如圖所示的空間直角坐標(biāo)系B xyz 設(shè)BA 2 則B 0 0 0 C 2 0 0 A 0 2 0 C1 2 0 1 D 1 0 0 設(shè)平面ADC1的法向量為n x y z 取y 1 得n 2 1 2 易知平面ADC的一個(gè)法向量為v 0 0 1 因?yàn)槎娼荂1 AD C是銳二面角 3 試問(wèn)線(xiàn)段A1B1上是否存在點(diǎn)E 使AE與DC1成60 角 若存在 確定E點(diǎn)位置 若不存在 說(shuō)明理由 解假設(shè)存在滿(mǎn)足條件的點(diǎn)E 因?yàn)辄c(diǎn)E在線(xiàn)段A1B1上 A1 0 2 1 B1 0 0 1 故可設(shè)E 0 1 其中0 2 因?yàn)锳E與DC1成60 角 所以當(dāng)點(diǎn)E為線(xiàn)段A1B1的中點(diǎn)時(shí) AE與DC1成60 角 思維升華 空間向量最適合于解決這類(lèi)立體幾何中的探索性問(wèn)題 它無(wú)需進(jìn)行復(fù)雜的作圖 論證 推理 只需通過(guò)坐標(biāo)運(yùn)算進(jìn)行判斷 解題時(shí) 把要成立的結(jié)論當(dāng)作條件 據(jù)此列方程或方程組 把 是否存在 問(wèn)題轉(zhuǎn)化為 點(diǎn)的坐標(biāo)是否有解 是否有規(guī)定范圍內(nèi)的解 等 所以為使問(wèn)題的解決更簡(jiǎn)單 有效 應(yīng)善于運(yùn)用這一方法 跟蹤演練3如圖所示 四邊形ABCD是邊長(zhǎng)為1的正方形 MD 平面ABCD NB 平面ABCD 且MD NB 1 E為BC的中點(diǎn) 1 求異面直線(xiàn)NE與AM所成角的余弦值 解如圖 以D為坐標(biāo)原點(diǎn) DA DC DM所在直線(xiàn)分別為x軸 y軸 z軸 建立空間直角坐標(biāo)系 則D 0 0 0 A 1 0 0 M 0 0 1 C 0 1 0 2 在線(xiàn)段AN上是否存在點(diǎn)S 使得ES 平面AMN 若存在 求線(xiàn)段AS的長(zhǎng) 若不存在 請(qǐng)說(shuō)明理由 解假設(shè)在線(xiàn)段AN上存在點(diǎn)S 使得ES 平面AMN 由ES 平面AMN 故線(xiàn)段AN上存在點(diǎn)S 高考押題精練 1 求證 PQ 平面BCE 2 求二面角A DF E的余弦值 押題依據(jù)利用空間向量求二面角全面考查了空間向量的建系 求法向量 求角等知識(shí) 是高考的重點(diǎn)和熱點(diǎn) 1 證明連接AC 四邊形ABCD是矩形 且Q為BD的中點(diǎn) Q為AC的中點(diǎn) 又在 AEC中 P為AE的中點(diǎn) PQ EC EC 面BCE PQ 面BCE PQ 平面BCE 2 解如圖 取EF的中點(diǎn)M 則AF AM 以A為坐標(biāo)原點(diǎn) 以AM AF AD所在直線(xiàn)分別為x y z軸建立空間直角坐標(biāo)系 則A 0 0 0 D 0 0 1 M 2 0 0 F 0 2 0 設(shè)平面DEF的法向量為n x y z 令x 1 則y 1 z 2 故n 1 1 2 是平面DEF的一個(gè)法向量 AM 面ADF 由圖可知所求二面角為銳角- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專(zhuān)題五 立體幾何與空間向量 第3講 立體幾何中的向量方法課件 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 策略 專(zhuān)題 立體幾何 空間 向量 中的 方法 課件
鏈接地址:http://www.hcyjhs8.com/p-5645932.html