畢 業(yè) 設(shè) 計(論 文)外 文 參 考 資 料 及 譯 文譯文題目: Design and Control Principles of Plug-In Hybrid Electric Vehicle 設(shè)計和插電式混合動力電動汽車控制原則學(xué)生姓名:專 業(yè):所在學(xué)院:指導(dǎo)教師:職 稱:說明:要求學(xué)生結(jié)合畢業(yè)設(shè)計(論文)課題參閱一篇以上的外文資料,并翻譯至少一萬印刷符(或譯出 3 千漢字)以上的譯文。譯文原則上要求打?。ㄈ缡謱懀宦捎?400 字方格稿紙書寫) ,連同學(xué)校提供的統(tǒng)一封面及英文原文裝訂,于畢業(yè)設(shè)計(論文)工作開始后 2 周內(nèi)完成,作為成績考核的一部分。Design and Control Principles of Plug-InHybrid Electric VehicleAs discussed in the previous chapters, in the PPS charge sustained hybrid drive train, the net energy consumption in PPS in a complete driving cycle is zero, that is, the energy level in the PPS at the beginning of the driving cycle is equal to the energy level at the end of the driving cycle. All the propul- sion energy comes from the primary energy source: gasoline or diesel for IC engines; hydrogen or hydrogen-based fuel for fuel cells. During operation, the energy in the PPS fluctuates in a narrow window. The PPS size is deter- mined by power rather than energy capacity. The energy-to-power ratio is in the range of 0.05–0.1 kWh/kW. That is to say, with a given power capacity, the energy storage in PPS is considered to be sufficient if it can sustain 0.05–0.1 h with the given power. Thus, the PPS is more an energy buffer than energy storage. This is also the origin of the name PPS (peaking power source). At present and in the immediate future, ultracapacitors and high-power batter- ies or their combination are the most promising candidates as the PPS of the PPS charge sustained HEVs (for details, refer to Chapter 12 of Peaking Power Source and Energy Storage).With the development and maturing of advanced battery technologies, the energy storage capacity of batteries has significantly improved. Obviously, using high-energy batteries only as a PPS is a waste.The plug-in hybrid electric drive train is designed to fully or partially use the energy of the energy storage to displace part of the primary energy source, such as gasoline, diesel, hydrogen, and so on.All the configurations discussed in Chapter 5 can be employed in plug-in hybrid electric drive trains. Most of the differences from the PPS sustained hybrid drive train are in the drive train control strategy, energy storage design, and perhaps, slightly different electric motor power design. This chapter will concentrate on these three topics.10.1 Statistics of Daily Driving DistanceCharging the energy in the energy storage device from the utility grid, to displace part of the petroleum fuel, is the major feature of the plug-in hybrid electric vehicles (PHEVs). The amount of petroleum fuel displaced by the utility electricity depends mainly on the amount of electrical energy per recharge, that is, the energy capacity of the energy storage; total driving dis- tance between recharges, that is, usual daily driving distance; and electrical power usage profiles, that is, the driving cycle features and control strate- gies. To achieve optimal design, especially for the energy storage system, understanding the daily driving distance in a typical environment is very helpful.Figure 10.1 is a histogram showing the daily driving distance distribu- tion and the cumulative frequency derived from the 1995 National Personal Transportation Survey data.1,2 The cumulative frequency or utility factor in reference1 represents the percentages of the total driving time (days) during which the daily driving distances are less than or equal to the said distance on the horizontal axis. Figure 10.1 reveals the fact that about half of the daily driving distance is less than 64 km (40 miles). If a vehicle is designed to have 64 km (40 miles) of pure EV range, that vehicle will have half of its total driving distance from the pure EV mode. Even if the daily traveling distance is beyond this 60 km (40 miles) pure EV range, a large amount of the petroleum fuel can be displaced by electricity, due to the pure EV mode taking a large portion of the daily travel. Research also shows that even if the pure EV range is less than 64 km (40 miles), such as 32 km (20 miles), there is still a large amount of petroleum that can be displaced in normal daily driving.FIGURE 10.1 Daily driving distance distribution and cumulative factor10.2 Energy Management StrategyFirst, some definitions about PHEV are introduced:Charge-Depleting (CD) Mode: An operating mode in which the SOC of the energy storage may fluctuate, but on average decreases while driving.Charge-Sustaining (CS) Mode: An operating mode in which the SOC of the energy storage may fluctuate but on average is maintained at a certain level while driving.All Electric Range (AER): After a full recharge, the total miles (kilo- meters) driven electrically (engine off) before the engine turns on for the first time.Electric Vehicle Miles (EVM) or Kilometers (EVKM): After a full recharge, the cumulative miles or kilometers driven electrically (engine off) before the vehicle reaches CS mode.Charge-Depleting Range (CDR): After a full recharge, the total miles or kilometers driven before the vehicle reaches CS mode. It should be noted that EVM or EVKM dictates pure electric driving. However, CDR may include engine propulsion, but the on-average SOC of the energy storage decreases till the sustaining level.PHExx: A PHEV with useable energy storage equivalent to xx miles of driving energy on a reference driving cycle, where xx stands for the mileage number. For example, PHEV20 can displace petroleum energy equivalent to 20 miles of driving on the reference driving cycle with off-board electricity. A similar definition can be made in kilometers. It should be noted that PHEV20, for example, does not imply that the vehicle will achieve 20 miles of AER, EVM, or CDR on the reference cycle, nor any other cycle. Operating characteristics also depend on the power ratings of components, the power train control strategy, and the nature of the driving cycle.10.2.1 AER-Focused Control StrategyThe idea of this control strategy is to use the energy of the energy storage intensively in the AER.3,4 One possibility is to allow the driver to manually select between a CS mode and a full EV operating mode. This design could be useful for vehicles that may be used in the region where combustion engine use is restricted. This design provides flexibility for the driver to determine the times that the pure EV mode is used. For example, in a trip that includes places where pure EV operation is required, the driver can select the pure EV operating mode just prior to entering this area in order to have sufficient range. In other places, the vehicle may be operated in pure EV mode or CS mode, depending on the energy status of the energy storage and the power demand. In normal conditions, where the trip does not include mandatory pure EV operation, the driver could select the pure EV mode at the start of the trip in order to fully use the energy of the energy storage to displace the petroleum fuel, until the energy of the energy storage reaches its specified level at which the CS mode will start automatically.This energy management approach clearly divides the whole trip into pure EV and CS modes. Thus, the design and control techniques developed for EV and HEV in the previous chapters can be used. When series hybrid config- uration is used, the power rating designs of the motor, engine, and energy storage are almost the same as in the CS hybrid. The motor power guarantees the acceleration and gradeability performance, the engine/generator power supports the vehicle driving at a constant speed on flat or mild grades, and the energy storage power is larger (or at least not smaller) than the motor power minus the engine/generator power. However, the energy storage has to be designed so that its useable energy can meet the requirement of the pure EV range. When parallel or series/parallel configuration is used, the motor power should be designed to meet the peaking power requirements of the reference driving cycles. Otherwise, the vehicle cannot follow the speed pro- file of the drive cycle, and will be somewhat sluggish, compared to the driver expectation.The traction power computations in typical driving cycles have been dis- cussed in detail in previous chapters. However, for the reader’s convenience, it is repeated below.The traction power on the driven wheels includes the rolling resistance, aerodynamic drag, inertial force of acceleration, and grade resistance, which can be expressed as where M is the vehicle mass in kg, V is the vehicle speed in m/s, g is the gravity acceleration, 9.81 m/s2, ρa is the air mass density, 1.205 kg/m3, CD is the aerodynamic drag coefficient of the vehicle, Af is the front area of the vehicle in m2, δ is the rotational inertia factor, dV/dt is the acceleration in m/s2, and i is the road grade. In standard driving cycles, flat roads are used. Figure 10.2 is a diagram showing the vehicle speed and the traction power, on the driven wheels, versus the traveling distance in the FTP75 urban driving cycle. The vehicle parameters used in this computation are listed in Table 10.1. Figure 10.2 indicates that the peaking traction power on the driven wheels is about 25 kW. However, there are power losses in the path from the energy storage to the driven wheels. In order to meet the power requirement, the motor output power should be designed to account for the power losses from the motor shaft to the driven wheels. Suppose that the efficiency from the motor shaft to the driven wheels is 90%; then the motor shaft power rating is about 28 kW. It should be noted that this required motor power is also related to the vehicle speed at which this peak power occurs. For example, the peaking power in Figure 10.2 occurs at a vehicle speed of 50 km/h (31.25 mph). In the motor power design, we must be sure that the motor can produce this peak power at this vehicle speed. Similarly, the peaking power of the energy storage should include the losses in the electric motor, the power electronics, and the transmission. Suppose that the efficiencies of the motor and power electronics are 0.85 and 0.95, respectively; then the power capacity of the energy storage is about 34.7 kW in this example. Table 10.2 lists the motor power and the energy storage power in FTP75 urban, FTP75 highway, LA92, and US06 driving cycles.FIGURE 10.2 Vehicle speed and traction power in an FTP75 urban driving cycle.Integrating Equation 10.1, over the driving time in a driving cycle, can give the energy consumption by the driven wheels as shown in Figure 10.3. Here, no regenerative braking is included. When including energy losses in the power electronics, the motor, and the transmission, the useable energy in the energy storage, for 32 km (20 miles) and 64 km (40 miles) of pure EV driving in typical driving cycles, is listed in Table 10.3.In vehicle design, an appropriate reference driving cycle should be selected. An aggressive driving cycle, such as US06, will need a large motor drive and energy storage, but will also give good vehicle acceleration and grade- ability performance. On the contrary, a mild driving cycle, such as FTP75, will lead to a small motor drive and energy storage, but also a sluggish vehicle performance.The following figures show simulation results of the drive train in the ref- erence driving cycle, FTP75 urban. The vehicle parameters listed in Table 10.1 were used. The total energy in the energy storage, fully charged, is 10 kWh. The simulation ran nine sequential cycles and the pure EV mode was started at the beginning of the simulation, until the SOC reached about 30%, beyond which the CS mode was started. The control strategy in the CS mode employed the constrained engine on–off control strategy, discussed in Section 8.2.3. In the simulation, 400 W of constant auxiliary power was added at the terminal of the energy storage.Figures 10.4 and 10.5 show the engine power and the motor power. Figure 10.6 shows the SOC of the energy storage, and the remaining energy in the energy storage, versus the traveling distance. The pure EV mode range is about 32 km (20 miles). Figure 10.7 shows the engine operating points overlapping its brake-specific fuel consumption map.Figures 10.8 and 10.9 show the fuel and electric energy consumption scenarios, in metric and English units, respectively. It can be seen that when the traveling distance is less than four driving cycles (42.5 km or 26.6 miles), the vehicle can completely displace the petroleum fuel with electricity with pure EV mode. The total electric energy consumed is about 7.1 and 15.5 kWh per 100 km, or 4.05 miles/kWh (Figure 10.9). With the increasing total traveling distance, the percentage of the fuel displacement decreases, since the CS modes take larger percentages of the trip. For nine sequential driving cycles (96 km or 60 miles), the fuel and electrical energy consumptions are about 3.2 L/100 km (Figure 10.8) or 74 mpg (Figure 10.9), and 7.42 kWh/100 km (Figure 10.8) or 8.43 mile/kWh (Figure 10.9).FIGURE 10.3 Energy consumption by the driven wheels versus driving distance in typical driving cycles.FIGURE 10.4 Engine power versus traveling distance in FTP75 urban driving cycle with AER mode.FIGURE 10.5 Engine power versus traveling distance in FTP75 urban driving cycle with AER mode.FIGURE 10.6 SOC and the remaining energy in the energy storage versus traveling distance in FTP75 urban driving cycle with AER mode.FIGURE 10.7 Engine operating points overlapping its fuel consumption map in FTP75 urban driving cycle with AER mode.FIGURE 10.8 Fuel and electric energy consumption versus the number of FTP75 urban driving cycle and traveling distance with AER mode in metric unit.Simulation of the same design in the LA92 driving cycle has also been performed. The results are illustrated in the following figures (Figures 10.10 through 10.15). Comparing the two driving cycles, the LA92 driving cycle has higher vehicle speed and larger acceleration rate. The pure EV range is shorter, and the fuel and electric energy consumptions are higher than in FTP75 urban driving cycles.設(shè)計和插電式混合動力電動汽車控制原則正如在前面的章節(jié),PPS 持續(xù)充電混合動力傳動系統(tǒng)中討論聚苯硫醚在一個完整的驅(qū)動周期凈能源消耗量為零,也就是說中驅(qū)動周期初 PPS 的能量級別等于能量級別驅(qū)動周期末尾。所有的推進能量來自能量的主要來源: 汽油或柴油發(fā)動機;氫或氫燃料的燃料電池。在操作期間,在聚苯硫醚的能量波動在一個狹窄的窗口。聚苯硫醚大小是為了震懾-雷區(qū)的權(quán)力,而不是能量的能力。能源電力比范圍內(nèi)的 0.05-0.1 千瓦時/千瓦。即是說,以給定的功率容量,聚苯硫醚的蓄能被認為是足夠的如果它可以維持 0.05-0.1 h 與給定的功率。因此,聚苯硫醚是更多的能量緩沖作用比能量存儲。這也是聚苯硫醚 (調(diào)峰電源) 名稱的由來。目前和在近期未來,超級電容和大功率的面糊或它們的組合是最有希望的候選人的聚苯硫醚 PPS 電荷的持續(xù)混合電動汽車 (有關(guān)詳細信息,請參閱第十二章的調(diào)峰電源和能量存儲)。隨著的發(fā)展和成熟的先進的電池技術(shù),大大改善了電池的能量存儲容量。很明顯,用高能電池只能作為聚苯硫醚是種浪費。插電式混合動力電動列車被設(shè)計用于完全或部分能量儲存的能量來取代一部分能量的主要來源,汽油、 柴油、 氫等。第 5 章中討論的所有配置可以都受雇于插件混合動力的火車。從持續(xù)的聚苯硫醚混合動力傳動系統(tǒng)的差異大多在傳動控制策略中,能量存儲設(shè)計,而且也許稍有不同的電動馬達電源設(shè)計。本章將集中在這三個主題。10.1 統(tǒng)計數(shù)據(jù)的日常駕駛距離充電中從公用電網(wǎng)儲能裝置的能量,來取代石油燃料的一部分是插電式混合動力車的主要的特點電動汽車 (Phev)。實用電力來取代石油燃料量主要取決于所用的電能每充值,那就是,能量容量的儲能;總的駕駛距離之間的補給,那就是,平時日常行車距離;電力使用的配置文件,就是駕駛的周期特征和控制戰(zhàn)略,即。要實現(xiàn)優(yōu)化設(shè)計,尤其是對于能量存儲系統(tǒng),了解日常行車距離在典型環(huán)境中是非常有用的。圖 10.1 是顯示日常行車距離分布直方圖和累積頻率來自 1995 年全國個人交通調(diào)查 data.1,2 累積頻率或者實用因素在參考資料 1 表示百分比的總行駛時間 (天) 期間的日常駕駛距離是小于或等于說距離在水平軸上。圖 10.1 揭示了大約一半的日常行車距離是小于 64 公里 (40 英里) 的事實。如果車輛在設(shè)計上有 64 公里 (40 英里 ) 的純電動汽車范圍,該車輛便會從純電動模式行駛距離其總數(shù)的一半。即使日常旅行的距離這個 60 公里 (40 英里 ) 純電動汽車范圍之外,大量的石油燃料可以用電,采取日常旅行很大一部分的純電動汽車模式導(dǎo)致流離失所。研究還表明,即使純 EV 范圍是小于 64 公里 (40 英里),如 32 公里 (20 英里) ,在正常的日常駕駛?cè)杂写罅康氖?,可以被淘汰。圖 10.1 日常行車距離分布和累積的因素10.2 能量管理策略第一,關(guān)于 PHEV 的一些概念介紹:電荷消耗 (CD) 模式: 經(jīng)營模式蓄能的 SOC 起伏不定,但平均減少開車。負責維持 (CS) 模式: 操作模式 — 蓄能的 SOC 可能波動但平均是開車時在某一水平維持。所有電動范圍 (AER): 后充分補給,總英里 (公斤米) 電力驅(qū)動 (關(guān)閉發(fā)動機) 之前的發(fā)動機轉(zhuǎn)彎處第一次。電動車輛英里 (EVM) 或公里 (EVKM): 經(jīng)過充分的補給,累積英里或公里電力驅(qū)動 (關(guān)閉發(fā)動機) 之前,汽車到達 CS 模式。電荷消耗范圍 (CDR): 充分的補給,總英里或公里前車輛驅(qū)動后達到的 CS 模式。應(yīng)指出的是,EVM 或 EVKM 支配純電力驅(qū)動。然而,CDR 可能包括發(fā)動機推進,但對平均 SOC 的能量存儲降低到可持續(xù)的水平。PHExx: 某型 PHEV 與可用的能源儲量相當于 xx 英里的駕駛能源上行駛工況,其中 xx 代表的里程數(shù)的引用。例如,PHEV20 可以取代石油能源相當于送板電驅(qū)動循環(huán)引用上行駛了 20 英里。一個類似的定義可以在公里。應(yīng)該指出的是,PHEV20,例如,并不意味著車輛將在參考周期,也沒有其它任何經(jīng)濟周期達到 20 英里的 AER, EVM 或 CDR。經(jīng)營特色還取決于組件、 動力總成控制策略,和駕駛 cycle.1 性質(zhì)的額定功率 10.2.1 AER 集中控制策略。10.2.1 集中控制策略這種控制策略的想法是集約利用的能量,能量存儲在 AER.3,4 一種可能性是允許驅(qū)動程序手動 CS 模式和完整的電動汽車運營模式之間進行選擇。這種設(shè)計可用于可能燃燒發(fā)動機使用是受限制的區(qū)域中使用的車輛。這種設(shè)計提供了靈活性的驅(qū)動程序,以確定用純電動模式的時間。例如,在一次旅行,其中包括純電動汽車運營要求的場合,驅(qū)動程序可以選擇純電動汽車運行模式只是進入這一領(lǐng)域要足夠范圍。在其他地方,車輛可在純電動模式或 CS 模式,能源存儲和電力需求的能源狀況而定。在正常情況下,在這次旅行不包括強制性的純電動汽車運營,驅(qū)動程序可以選擇旅行的開始在純電動模式為充分利用蓄能的能源來取代石油燃料,直到能量存儲的能量達到其指定的級別的 CS 模式將自動啟動。這個能源管理辦法清楚地將整個行程分為純電動汽車和 CS 模式。因此,可以使用的設(shè)計和控制的技術(shù),開發(fā)電動汽車和混合動力汽車在前面的章節(jié)。系列混合構(gòu)形使用時,功率評級設(shè)計的電機、 引擎和能量存儲則與 CS 混合幾乎相同。電機功率保證加速和爬坡性能,發(fā)動機/發(fā)電機功率支持車輛平或溫和的成績,以恒定的速度行駛,能量存儲能力是較大的 (或至少不是更小的) 比減去發(fā)動機/發(fā)電機功率電機功率。然而,能量存儲有旨在使其可用的能源可以滿足純 EV 范圍的要求。當使用并聯(lián)或串聯(lián)/并聯(lián)配置時,電機功率應(yīng)旨在滿足駕駛循環(huán)引用的峰值功率要求。否則為車輛不能跟隨驅(qū)動器周期,速度 pro 文件,便會有點反應(yīng)遲鈍,相比驅(qū)動程序期望。在典型行駛工況牽引功率計算已經(jīng)在前面的章節(jié)中詳細討論了。但是,為方便讀者,它被重復(fù)下面。驅(qū)動輪牽引動力包括滾動阻力、 空氣阻力、 慣性力的加速度和等級電阻,可以表示為,其中,M 是公斤的車輛質(zhì)量,V 是車輛行駛速度在 m/s,g 是重力加速度,9.81 m/s2,ρa 是空氣質(zhì)量密度,1.205 公斤/m3,CD 是氣動阻力系數(shù)的車輛,Af 是在 m2,δ 車輛前面積轉(zhuǎn)動慣量因子,dV/dt m/s2 的加速度是而我就是道路等級。用標準行駛工況,平坦的道路。圖 10.2 是展示車輛速度和牽引動力,驅(qū)動車輪,與旅行的距離在 FTP75 城市駕駛循環(huán)圖。在這個計算中使用的車輛參數(shù)表 10.1 中列出。圖 10.2 指示驅(qū)動車輪上峰的牽引力量是約 25 千瓦。然而,從能量存儲到驅(qū)動輪的路徑有功率損耗。為滿足功率要求,電機輸出功率應(yīng)旨在占電機軸向驅(qū)動輪的功率損耗。假設(shè)從效率電機軸向驅(qū)動輪為 90%;然后電機軸的額定功率是大約 28 千瓦。應(yīng)該指出的是這需要電機功率也與此峰值功率發(fā)生情況時的車速有關(guān)。例如,在圖 10.2 調(diào)峰電源發(fā)生在 (31.25 英里) 每小時 50 公里的車速。在電機功率設(shè)計中,我們必須確保電機可以產(chǎn)生這種車輛速度這個峰值功率。同樣,儲能調(diào)峰電源應(yīng)包括電機、 電力電子技術(shù)和傳輸損失。假設(shè),電機和電力電子領(lǐng)域的效率分別為 0.85 和 0.95,;然后儲存能量的功率容量是約 34.7 千瓦在此示例中。表 10.2 列出了電機的功率和能量存儲能力在城市的 FTP75、 FTP75 公路、 LA92 和 US06 行駛工況。圖 10.2 車輛的牽引力和速度在 FTP75 城市驅(qū)動循環(huán)發(fā)電。積分方程 10.1 結(jié)束的駕車時間在驅(qū)動的周期,可以給出能源消費驅(qū)動輪如圖 10.3 所示。在這里,沒有再生制動是包括的。時包括在電力電子技術(shù)、 電機和傳動的能量損失,會在表 10.3 列出可用的能源,在能源儲存,為 32 公里 (20 英里) 和 64 公里 (40 英里) 的行駛中典型行駛工況,純電動汽車。在汽車設(shè)計中,應(yīng)選擇適當?shù)膮⒖夹旭偣r。侵略性的駕駛循環(huán),如 US06,將需要一個大型電機驅(qū)動和蓄能,但也會給好車輛加速和爬坡能力性能。與此相反,溫和的行駛工況,如 FTP75,將導(dǎo)致一個小型電機驅(qū)動器和能源存儲空間,但是也緩慢的整車性能。下面的數(shù)字顯示在參考驅(qū)動周期中,F(xiàn)TP75 城市的傳動系統(tǒng)的仿真結(jié)果。表 10.1 中列出的車輛參數(shù)使用了。完全充電的蓄能的總能量是 10 千瓦時。仿真跑九個連續(xù)周期,純電動模式開始模擬,初直到 SOC 達到 30%左右,超越的 CS 模式啟動。在 CS 模式控制策略第 8.2.3 節(jié)所述的約束的引擎 — — 開關(guān)控制策略。在模擬中,恒輔助功率 400 W 是在終端的能量存儲添加到。數(shù)字 10.4 和 10.5 顯示發(fā)動機的功率和電機的功率。圖 10.6顯示儲存能量和剩余能量的 SOC 中儲能與旅行的距離。純電動汽車共模范圍是約 32 公里 (20 英里)。圖 10.7 顯示發(fā)動機工作點重疊其制動特定燃料消費地圖。數(shù)字 10.8 和 10.9 的燃料和電能消耗 sce-narios,以公制單位和英制單位,分別顯示??梢钥吹?,當旅行距離少于四個駕駛循環(huán) (42.5 公里或 26.6 英里),車輛能完全取代石油燃料與電力與純電動模式。總的電能消耗是 7.1 和 15.5 千瓦時每 100 公里或 4.05 英里/千瓦時 (圖 10.9)。總的旅行 ing 距離增加,燃料位移的百分比下降,因為 CS 模式采取的這次旅行更大百分比。九序貫的驅(qū)動周期 (96 公里或 60 英里),燃料和電能消耗是關(guān)于 3.2 L 100 公里 (圖 10.8) 或 74 英里/加侖 (圖 10.9),和 7.42 千瓦時/100 km (圖 10.8) 或 8.43 英里/千瓦時 (圖 10.9)。圖 10.3 通過驅(qū)動輪與在典型行駛工況行駛距離的能源消耗。圖 10.4 發(fā)動機功率與旅行距離在 FTP75 城市駕駛循環(huán)的 AER 模式。圖 10.4 發(fā)動機功率與旅行距離在 FTP75 城市駕駛循環(huán)的 AER 模式。圖 10.6 SOC 和儲能與旅行距離在 FTP75 城市駕駛中的剩余能量周期 AER 模式。圖 10.7 發(fā)動機工作點重疊其燃料消費地圖在 FTP75 城市駕車 AER 模式的周期。圖 10.8 燃料和電能消耗與數(shù)的 FTP75 城市車輛行駛工況和旅行距離上用公制單位 AER 模式。也進行了相同的設(shè)計,在 LA92 行駛工況的模擬。結(jié)果所示的下列數(shù)字 (數(shù)字 10.10 通過 10.15)。比較兩個駕駛循環(huán),LA92 行駛工況有較高的車輛速度和更大的加速度速度。純電動汽車范圍較短,和燃料和電能消耗均高于 FTP75 城市駕駛循環(huán)。