2019-2020年人教A版高中數(shù)學(xué)必修二2.2.3《直線與平面平行的性質(zhì)》word教案.doc
《2019-2020年人教A版高中數(shù)學(xué)必修二2.2.3《直線與平面平行的性質(zhì)》word教案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué)必修二2.2.3《直線與平面平行的性質(zhì)》word教案.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué)必修二2.2.3《直線與平面平行的性質(zhì)》word教案 一、教材分析 上節(jié)課已學(xué)習(xí)了直線與平面平行的判定定理,這節(jié)課將通過例題讓學(xué)生體會(huì)應(yīng)用線面平行的性質(zhì)定理的難度,進(jìn)而明確告訴學(xué)生:線面平行的性質(zhì)定理是高考考查的重點(diǎn),也是最難應(yīng)用的兩個(gè)定理之一.本節(jié)重點(diǎn)是直線與平面平行的性質(zhì)定理的應(yīng)用. 二、教學(xué)目標(biāo) 1.知識(shí)與技能 掌握直線與平面平行的性質(zhì)定理及其應(yīng)用. 2.過程與方法 學(xué)生通過觀察與類比,借助實(shí)物模型性質(zhì)及其應(yīng)用. 3.情感、態(tài)度與價(jià)值觀 (1)進(jìn)一步提高學(xué)生空間想象能力、思維能力. (2)進(jìn)一步體會(huì)類比的作用. (3)進(jìn)一步滲透等價(jià)轉(zhuǎn)化的思想. 三、教學(xué)重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn):直線與平面平行的性質(zhì)定理. 教學(xué)難點(diǎn):直線與平面平行的性質(zhì)定理的應(yīng)用. 四、課時(shí)安排 1課時(shí) 五、教學(xué)設(shè)計(jì) (一)復(fù)習(xí) 回憶直線與平面平行的判定定理: (1)文字語(yǔ)言:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行. (2)符號(hào)語(yǔ)言為: (3)圖形語(yǔ)言為:如圖1. 圖1 (二)導(dǎo)入新課 思路1.(情境導(dǎo)入) 教室內(nèi)日光燈管所在的直線與地面平行,是不是地面內(nèi)的所有直線都與日光燈管所在的直線平行? 思路2.(事例導(dǎo)入) 觀察長(zhǎng)方體(圖2),可以發(fā)現(xiàn)長(zhǎng)方體ABCD—A′B′C′D′中,線段A′B所在的直線與長(zhǎng)方體ABCD—A′B′C′D′的側(cè)面C′D′DC所在平面平行,你能在側(cè)面C′D′DC所在平面內(nèi)作一條直線與A′B平行嗎? 圖2 (三)推進(jìn)新課、新知探究、提出問題 ①回憶空間兩直線的位置關(guān)系. ②若一條直線與一個(gè)平面平行,探究這條直線與平面內(nèi)直線的位置關(guān)系. ③用三種語(yǔ)言描述直線與平面平行的性質(zhì)定理. ④試證明直線與平面平行的性質(zhì)定理. ⑤應(yīng)用線面平行的性質(zhì)定理的關(guān)鍵是什么? ⑥總結(jié)應(yīng)用線面平行性質(zhì)定理的要訣. 活動(dòng):問題①引導(dǎo)學(xué)生回憶兩直線的位置關(guān)系. 問題②借助模型鍛煉學(xué)生的空間想象能力. 問題③引導(dǎo)學(xué)生進(jìn)行語(yǔ)言轉(zhuǎn)換. 問題④引導(dǎo)學(xué)生用排除法. 問題⑤引導(dǎo)學(xué)生找出應(yīng)用的難點(diǎn). 問題⑥鼓勵(lì)學(xué)生總結(jié),教師歸納. 討論結(jié)果:①空間兩條直線的位置關(guān)系:相交、平行、異面. ②若一條直線與一個(gè)平面平行,這條直線與平面內(nèi)直線的位置關(guān)系不可能是相交(可用反證法證明),所以,該直線與平面內(nèi)直線的位置關(guān)系還有兩種,即平行或異面. 怎樣在平面內(nèi)作一條直線與該直線平行呢(排除異面的情況)?經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行. ③直線與平面平行的性質(zhì)定理用文字語(yǔ)言表示為: 如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行. 這個(gè)定理用符號(hào)語(yǔ)言可表示為: 這個(gè)定理用圖形語(yǔ)言可表示為:如圖3. 圖3 ④已知a∥α,aβ,α∩β=b.求證:a∥b. 證明: ⑤應(yīng)用線面平行的性質(zhì)定理的關(guān)鍵是:過這條直線作一個(gè)平面. ⑥應(yīng)用線面平行性質(zhì)定理的要訣:“見到線面平行,先過這條直線作一個(gè)平面找交線”. (四)應(yīng)用示例 思路1 例1 如圖4所示的一塊木料中,棱BC平行于面A′C′. 圖4 (1)要經(jīng)過面A′C′內(nèi)的一點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線? (2)所畫的線與面AC是什么位置關(guān)系? 活動(dòng):先讓學(xué)生思考、討論再回答,然后教師加以引導(dǎo). 分析:經(jīng)過木料表面A′C′內(nèi)的一點(diǎn)P和棱BC將木料鋸開,實(shí)際上是經(jīng)過BC及BC外一點(diǎn)P作截面,也就是找出平面與平面的交線.我們可以由線面平行的性質(zhì)定理和公理4、公理2作出. 解:(1)如圖5,在平面A′C′內(nèi),過點(diǎn)P作直線EF,使EF∥B′C′, 圖5 并分別交棱A′B′、C′D′于點(diǎn)E、F.連接BE、CF. 則EF、BE、CF就是應(yīng)畫的線. (2)因?yàn)槔釨C平行于面A′C′,平面BC′與平面A′C′交于B′C′,所以BC∥B′C′. 由(1)知,EF∥B′C′, 所以EF∥BC.因此 BE、CF顯然都與平面AC相交. 變式訓(xùn)練 如圖6,a∥α,A是α另一側(cè)的點(diǎn),B、C、D∈a,線段AB、AC、AD交α于E、F、G點(diǎn),若BD=4,CF=4,AF=5,求EG. 圖6 解:Aa,∴A、a確定一個(gè)平面,設(shè)為β. ∵B∈a,∴B∈β. 又A∈β,∴ABβ. 同理ACβ,ADβ. ∵點(diǎn)A與直線a在α的異側(cè), ∴β與α相交. ∴面ABD與面α相交,交線為EG. ∵BD∥α,BD面BAD,面BAD∩α=EG, ∴BD∥EG. ∴△AEG∽△ABD. ∴.(相似三角形對(duì)應(yīng)線段成比例) ∴EG=. 點(diǎn)評(píng):見到線面平行,先過這條直線作一個(gè)平面找交線,直線與交線平行,如果再需要過已知點(diǎn),這個(gè)平面是確定的. 例2 已知平面外的兩條平行直線中的一條平行于這個(gè)平面,求證另一條也平行于這個(gè)平面.如圖7. 圖7 已知直線a,b,平面α,且a∥b,a∥α,a,b都在平面α外. 求證:b∥α. 證明:過a作平面β,使它與平面α相交,交線為c. ∵a∥α,aβ,α∩β=c, ∴a∥c. ∵a∥b,∴b∥c. ∵cα,bα,∴b∥α. 變式訓(xùn)練 如圖8,E、H分別是空間四邊形ABCD的邊AB、AD的中點(diǎn),平面α過EH分別交BC、CD于F、G.求證:EH∥FG. 圖8 證明:連接EH. ∵E、H分別是AB、AD的中點(diǎn), ∴EH∥BD. 又BD面BCD,EH面BCD, ∴EH∥面BCD. 又EHα、α∩面BCD=FG, ∴EH∥FG. 點(diǎn)評(píng):見到線面平行,先過這條直線作一個(gè)平面找交線,則直線與交線平行. 思路2 例1 求證:如果兩個(gè)相交平面分別經(jīng)過兩條平行直線中的一條,那么它們的交線和這條直線平行.如圖9. 圖9 已知a∥b,aα,bβ,α∩β=c. 求證:c∥a∥b. 證明: 變式訓(xùn)練 求證:一條直線與兩個(gè)相交平面都平行,則這條直線與這兩個(gè)相交平面的交線平行. 圖10 已知:如圖10,a∥α,a∥β,α∩β=b, 求證: a∥b. 證明:如圖10,過a作平面γ、δ,使得γ∩α=c,δ∩β=d,那么有 點(diǎn)評(píng):本題證明過程,實(shí)際上就是不斷交替使用線面平行的判定定理、性質(zhì)定理及公理4的過程.這是證明線線平行的一種典型的思路. 例2 如圖11,平行四邊形EFGH的四個(gè)頂點(diǎn)分別在空間四邊形ABCD的邊AB、BC、CD、DA上,求證:BD∥面EFGH,AC∥面EFGH. 圖11 證明:∵EFGH是平行四邊形 變式訓(xùn)練 如圖12,平面EFGH分別平行于CD、AB,E、F、G、H分別在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB. 圖12 (1)求證:EFGH是矩形; (2)設(shè)DE=m,EB=n,求矩形EFGH的面積. (1)證明:∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF, ∴CD∥EF.同理HG∥CD,∴EF∥HG. 同理HE∥GF,∴四邊形EFGH為平行四邊形. 由CD∥EF,HE∥AB,∴∠HEF為CD和AB所成的角. 又∵CD⊥AB,∴HE⊥EF. ∴四邊形EFGH為矩形. (2)解:由(1)可知在△BCD中EF∥CD,DE=m,EB=n, ∴.又CD=a,∴EF=. 由HE∥AB,∴. 又∵AB=b,∴HE=. 又∵四邊形EFGH為矩形, ∴S矩形EFGH=HEEF=. 點(diǎn)評(píng):線面平行問題是平行問題的重點(diǎn),有著廣泛應(yīng)用. (五)知能訓(xùn)練 求證:經(jīng)過兩條異面直線中的一條有且只有一個(gè)平面和另一條直線平行. 已知:a、b是異面直線. 求證:過b有且只有一個(gè)平面與a平行. 證明:(1)存在性.如圖13, 圖13 在直線b上任取一點(diǎn)A,顯然Aa. 過A與a作平面β, 在平面β內(nèi)過點(diǎn)A作直線a′∥a, 則a′與b是相交直線,它們確定一個(gè)平面,設(shè)為α, ∵bα,a與b異面,∴aα. 又∵a∥a′,a′α,∴a∥α. ∴過b有一個(gè)平面α與a平行. (2)唯一性. 假設(shè)平面γ是過b且與a平行的另一個(gè)平面, 則bγ.∵A∈b,∴A∈γ. 又∵A∈β,∴γ與β相交,設(shè)交線為a″,則A∈a″. ∵a∥γ,aβ,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″. 這與a′∩a″=A矛盾. ∴假設(shè)錯(cuò)誤,故過b且與a平行的平面只有一個(gè). 綜上所述,過b有且只有一個(gè)平面與a平行. 變式訓(xùn)練 已知:a∥α,A∈α,A∈b,且b∥a.求證:bα. 證明:假設(shè)bα,如圖14, 圖14 設(shè)經(jīng)過點(diǎn)A和直線a的平面為β,α∩β=b′, ∵a∥α,∴a∥b′(線面平行則線線平行). 又∵a∥b,∴b∥b′,這與b∩b′=A矛盾. ∴假設(shè)錯(cuò)誤.故bα. (六)拓展提升 已知:a,b為異面直線,aα,bβ,a∥β,b∥α,求證:α∥β. 證明:如圖15,在b上任取一點(diǎn)P,由點(diǎn)P和直線a確定的平面γ與平面β交于直線c,則c與b相交于點(diǎn)P. 圖15 變式訓(xùn)練 已知AB、CD為異面線段,E、F分別為AC、BD中點(diǎn),過E、F作平面α∥AB. (1)求證:CD∥α; (2)若AB=4,EF=,CD=2,求AB與CD所成角的大小. (1)證明:如圖16,連接AD交α于G,連接GF, 圖16 ∵AB∥α,面ADB∩α=GFAB∥GF. 又∵F為BD中點(diǎn), ∴G為AD中點(diǎn). 又∵AC、AD相交,確定的平面ACD∩α=EG,E為AC中點(diǎn),G為AD中點(diǎn),∴EG∥CD. (2)解:由(1)證明可知: ∵AB=4,GF=2,CD=2,∴EG=1, EF=. 在△EGF中,由勾股定理,得∠EGF=90,即AB與CD所成角的大小為90. (七)課堂小結(jié) 知識(shí)總結(jié):利用線面平行的性質(zhì)定理將直線與平面平行轉(zhuǎn)化為直線與直線平行. 方法總結(jié):應(yīng)用直線與平面平行的性質(zhì)定理需要過已知直線作一個(gè)平面,是最難應(yīng)用的定理之一;應(yīng)讓學(xué)生熟記:“過直線作平面,把線面平行轉(zhuǎn)化為線線平行”. (八)作業(yè) 課本習(xí)題2.2 A組5、6.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線與平面平行的性質(zhì) 2019 2020 年人教 高中數(shù)學(xué) 必修 2.2 直線 平面 平行 性質(zhì) word 教案
鏈接地址:http://www.hcyjhs8.com/p-6174500.html