2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)3 合情推理 新人教A版選修1 -2.doc
《2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)3 合情推理 新人教A版選修1 -2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)3 合情推理 新人教A版選修1 -2.doc(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)分層作業(yè)(三) 合情推理 (建議用時(shí):40分鐘) [基礎(chǔ)達(dá)標(biāo)練] 一、選擇題 1. 下列推理是歸納推理的是( ) A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,得P的軌跡為橢圓 B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式 C.由圓x2+y2=r2的面積πr2,猜出橢圓+=1的面積S=πab D.科學(xué)家利用魚的沉浮原理制造潛艇 B [由歸納推理的定義知B是歸納推理,故選B.] 2.由代數(shù)式的乘法法則類比得到向量的數(shù)量積的運(yùn)算法則: ①“mn=nm”類比得到“ab=ba”; ②“(m+n)t=mt+nt”類比得到“(a+b)c=ac+bc”; ③“(mn)t=m(nt)”類比得到“(ab)c=a(bc)”; ④“t≠0,mt=xt?m=x”類比得到“p≠0,ap=xp?a=x”; ⑤“|mn|=|m||n|”類比得到“|ab|=|a||b|”; ⑥“=”類比得到“=”. 其中類比結(jié)論正確的個(gè)數(shù)是( ) 【導(dǎo)學(xué)號:48662051】 A.1 B.2 C.3 D.4 B [由向量的有關(guān)運(yùn)算法則知①②正確,③④⑤⑥都不正確,故選B.] 3.在數(shù)列{an}中,a1=0,an+1=2an+2,則猜想an是( ) A.2n-2 B.2n-2 C.2n-2- D.2n+1-4 A [∵a1=0=21-2, ∴a2=2a1+2=2=22-2, a3=2a2+2=4+2=6=23-2, a4=2a3+2=12+2=14=24-2, …… 猜想an=2n-2.故選A.] 4.用火柴棒擺“金魚”,如圖217所示: 圖217 按照上面的規(guī)律,第n個(gè)“金魚”圖需要火柴棒的根數(shù)為( ) 【導(dǎo)學(xué)號:48662052】 A.6n-2 B.8n-2 C.6n+2 D.8n+2 C [歸納“金魚”圖形的構(gòu)成規(guī)律知,后面“金魚”都比它前面的“金魚”多了去掉尾巴后6根火柴組成的魚頭部分,故各“金魚”圖形所用火柴棒的根數(shù)構(gòu)成一首項(xiàng)為8,公差是6的等差數(shù)列,所以第n個(gè)“金魚”圖需要的火柴棒的根數(shù)為an=6n+2.] 5.設(shè)△ABC的三邊長分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=,類比這個(gè)結(jié)論可知:四面體SABC的四個(gè)面的面積分別為S1、S2、S3、S4,內(nèi)切球半徑為r,四面體SABC的體積為V,則r=( ) A. B. C. D. C [設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是R,所以四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.則四面體的體積為V四面體ABCD=(S1+S2+S3+S4)R,∴R=.] 二、填空題 6.觀察分析下表中的數(shù)據(jù): 多面體 面數(shù)(F) 頂點(diǎn)數(shù)(V) 棱數(shù)(E) 三棱柱 5 6 9 五棱錐 6 6 10 立方體 6 8 12 猜想一般凸多面體中F,V,E所滿足的等式是________. 【導(dǎo)學(xué)號:48662053】 F+V-E=2 [觀察分析、歸納推理. 觀察F,V,E的變化得F+V-E=2.] 7.觀察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 照此規(guī)律,第n個(gè)等式為________. n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 [觀察所給等式,等式左邊第一個(gè)加數(shù)與行數(shù)相同,加數(shù)的個(gè)數(shù)為2n-1,故第n行等式左邊的數(shù)依次是n,n+1,n+2,…,(3n-2);每一個(gè)等式右邊的數(shù)為等式左邊加數(shù)個(gè)數(shù)的平方,從而第n個(gè)等式為n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.] 8.已知{bn}為等比數(shù)列,b5=2,則b1b2b3…b9=29.若{an}為等差數(shù)列,a5=2,則{an}的類似結(jié)論為________. a1+a2+a3+…+a9=29 [結(jié)合等差數(shù)列的特點(diǎn),類比等比數(shù)列中b1b2b3…b9=29可得,在{an}中,若a5=2,則有a1+a2+a3+…+a9=29.] 三、解答題 9.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-且Sn++2=an(n≥2),計(jì)算S1,S2,S3,S4,并猜想Sn的表達(dá)式. 【導(dǎo)學(xué)號:48662054】 [解] 先化簡遞推關(guān)系:n≥2時(shí),an=Sn-Sn-1, ∴Sn++2=Sn-Sn-1, ∴+Sn-1+2=0. 當(dāng)n=1時(shí),S1=a1=-. 當(dāng)n=2時(shí),=-2-S1=-,∴S2=-. 當(dāng)n=3時(shí),=-2-S2=-,∴S3=-. 當(dāng)n=4時(shí),=-2-S3=-,∴S4=-. 猜想:Sn=-,n∈N+. 10.如圖218所示,在長方形ABCD中,對角線AC與兩鄰邊所成的角分別為α、β,則cos2α+cos2β=1,則在立體幾何中,給出類比猜想. 圖218 [解] 在長方形ABCD中,cos2α+cos2β=+===1. 于是類比到長方體中,猜想其體對角線與共頂點(diǎn)的三條棱所成的角分別為α、β、γ, 則cos2α+cos2β+cos2γ=1. 證明如下:cos2α+cos2β+cos2γ=++===1. [能力提升練] 1.類比平面內(nèi)“垂直于同一條直線的兩條直線互相平行”的性質(zhì),可推出下列空間結(jié)論: ①垂直于同一條直線的兩條直線互相平行;②垂直于同一個(gè)平面的兩條直線互相平行;③垂直于同一條直線的兩個(gè)平面互相平行;④垂直于同一平面的兩個(gè)平面互相平行,則其中正確的結(jié)論是( ) 【導(dǎo)學(xué)號:48662055】 A.①② B.②③ C.③④ D.①④ B [根據(jù)立體幾何中線面之間的位置關(guān)系及有關(guān)定理知,②③是正確的結(jié)論.] 2.觀察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)等于( ) A.f(x) B.-f(x) C.g(x) D.-g(x) D [由所給函數(shù)及其導(dǎo)數(shù)知,偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù).因此當(dāng)f(x)是偶函數(shù)時(shí),其導(dǎo)函數(shù)應(yīng)為奇函數(shù),故g(-x)=-g(x).] 3.可以運(yùn)用下面的原理解決一些相關(guān)圖形(如圖219)的面積問題:如果與一固定直線平行的直線被甲、乙兩個(gè)封閉的圖形所截得的線段的比都為k,那么甲的面積是乙的面積的k倍.你可以從給出的簡單圖形①、②中體會(huì)這個(gè)原理.現(xiàn)在圖③中的兩個(gè)曲線的方程分別是+=1(a>b>0)與x2+y2=a2,運(yùn)用上面的原理,圖③中橢圓的面積為________. 圖219 πab [由于橢圓與圓截y軸所得線段之比為,即k=,∴橢圓面積S=πa2=πab.] 4.將全體正整數(shù)排成一個(gè)三角形數(shù)陣: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …… 按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個(gè)數(shù)為________. 【導(dǎo)學(xué)號:48662056】 [前n-1行共有正整數(shù)1+2+…+(n-1)個(gè),即個(gè),因此第n行第3個(gè)數(shù)是全體正整數(shù)中第+3個(gè),即為.] 5.某少數(shù)民族的刺繡有著悠久的歷史,如圖2110(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形. 圖2110 (1)求出f(5); (2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的表達(dá)式. [解] (1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25, ∴f(5)=25+44=41. (2)∵f(2)-f(1)=4=41, f(3)-f(2)=8=42, f(4)-f(3)=12=43, f(5)-f(4)=16=44, 由上式規(guī)律得出f(n+1)-f(n)=4n. ∴f(2)-f(1)=41, f(3)-f(2)=42, f(4)-f(3)=43, … f(n-1)-f(n-2)=4(n-2), f(n)-f(n-1)=4(n-1). ∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)n, ∴f(n)=2n2-2n+1.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)3 合情推理 新人教A版選修1 -2 2018 高中數(shù)學(xué) 課時(shí) 分層 作業(yè) 合情 推理 新人 選修
鏈接地址:http://www.hcyjhs8.com/p-6296300.html