2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題四 立體幾何 第一講 空間幾何體教案 文.docx
《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題四 立體幾何 第一講 空間幾何體教案 文.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題四 立體幾何 第一講 空間幾何體教案 文.docx(14頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第一講 空間幾何體 年份 卷別 考查角度及命題位置 命題分析 2018 Ⅰ卷 圓柱的表面積計(jì)算T5 立體幾何問題既是高考的必考點(diǎn),也是考查的難點(diǎn),其在高考中的命題形式較為穩(wěn)定,保持“一小一大”或“兩小一大”的格局.多以選擇題或者填空題的形式考查空間幾何體三視圖的識(shí)別,空間幾何體的體積或表面積的計(jì)算. 長(zhǎng)方體體積計(jì)算T10 Ⅱ卷 圓錐的體積求法T16 Ⅲ卷 與數(shù)學(xué)文化有關(guān)的三視圖判斷T3 2017 Ⅰ卷 三棱錐與球的結(jié)合體問題T16 Ⅱ卷 三視圖與體積求法T6 長(zhǎng)方體與球的結(jié)合體問題T15 Ⅲ卷 圓柱與球的結(jié)合體問題T9 2016 Ⅰ卷 有關(guān)球的三視圖及表面積T7 Ⅱ卷 正方體及其外接球的空間關(guān)系,及外接球的表面積T4 空間幾何體三視圖及組合體的表面積T7 Ⅲ卷 空間幾何體三視圖及表面積的計(jì)算T10 直三棱柱的體積最值問題T11 空間幾何體的三視圖 授課提示:對(duì)應(yīng)學(xué)生用書第34頁 [悟通——方法結(jié)論] 一個(gè)物體的三視圖的排列規(guī)則 俯視圖放在正視圖的下面,長(zhǎng)度與正視圖的長(zhǎng)度一樣,側(cè)視圖放在正視圖的右面,高度與正視圖的高度一樣,寬度與俯視圖的寬度一樣,即“長(zhǎng)對(duì)正、高平齊、寬相等”. [全練——快速解答] 1.(2018高考全國卷Ⅲ)中國古建筑借助榫卯將木構(gòu)件連接起來.構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長(zhǎng)方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長(zhǎng)方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是( ) 解析:由題意可知帶卯眼的木構(gòu)件的直觀圖如圖所示,由直觀圖可知其俯視圖應(yīng)選A. 故選A. 答案:A 2.(2017高考全國卷Ⅰ)某多面體的三視圖如圖所示,其中正視圖和左視圖都由正方形和等腰直角三角形組成,正方形的邊長(zhǎng)為2,俯視圖為等腰直角三角形.該多面體的各個(gè)面中有若干個(gè)是梯形,這些梯形的面積之和為( ) A.10 B.12 C.14 D.16 解析:由三視圖可知該多面體是一個(gè)組合體,下面是一個(gè)底面是等腰直角三角形的直三棱柱,上面是一個(gè)底面是等腰直角三角形的三棱錐,等腰直角三角形的腰長(zhǎng)為2,直三棱柱的高為2,三棱錐的高為2,易知該多面體有2個(gè)面是梯形,且這兩個(gè)梯形全等,這些梯形的面積之和為2=12,故選B. 答案:B 3.(2018山西八校聯(lián)考)將正方體(如圖1)截去三個(gè)三棱錐后,得到如圖2所示的幾何體,側(cè)視圖的視線方向如圖2所示,則該幾何體的側(cè)視圖為( ) 解析:將圖2中的幾何體放到正方體中如圖所示,從側(cè)視圖的視線方向觀察,易知該幾何體的側(cè)視圖為選項(xiàng)D中的圖形,故選D. 答案:D 【類題通法】 明確三視圖問題的常見類型及解題策略 (1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實(shí)線,看不到的部分用虛線表示. (2)由幾何體的部分視圖畫出剩余的視圖.先根據(jù)已知的一部分視圖,還原、推測(cè)直觀圖的可能形式,然后再找其剩下部分視圖的可能形式.當(dāng)然作為選擇題,也可將選項(xiàng)逐項(xiàng)代入,再看看給出的部分三視圖是否符合. (3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺(tái)、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實(shí)物圖. 空間幾何體的表面積與體積 授課提示:對(duì)應(yīng)學(xué)生用書第35頁 [悟通——方法結(jié)論] 求解幾何體的表面積或體積 (1)對(duì)于規(guī)則幾何體,可直接利用公式計(jì)算. (2)對(duì)于不規(guī)則幾何體,可采用割補(bǔ)法求解;對(duì)于某些三棱錐,有時(shí)可采用等體積轉(zhuǎn)換法求解. (3)求解旋轉(zhuǎn)體的表面積和體積時(shí),注意圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺(tái)的軸截面是等腰梯形的應(yīng)用. [全練——快速解答] 1.(2017高考全國卷Ⅱ)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為( ) A.90π B.63π C.42π D.36π 解析:法一:由題意知,該幾何體由底面半徑為3,高為10的圓柱截去底面半徑為3,高為6的圓柱的一半所得,故其體積V=π3210-π326=63π. 法二:由題意知,該幾何體由底面半徑為3,高為10的圓柱截去底面半徑為3,高為6的圓柱的一半所得,其體積等價(jià)于底面半徑為3,高為7的圓柱的體積,所以它的體積V=π327=63π. 答案:B 2.(2018福州四校聯(lián)考)已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( ) A. B.27 C.27 D.27 解析:在長(zhǎng)、寬、高分別為3,3,3的長(zhǎng)方體中,由幾何體的三視圖得幾何體為如圖所示的三棱錐CBAP,其中底面BAP是∠BAP=90?的直角三角形,AB=3,AP=3,所以BP=6,又棱CB⊥平面BAP且CB=3,所以AC=6,所以該幾何體的表面積是33+33+63+63=27,故選D. 答案:D 3.(2018西安八校聯(lián)考)某幾何體的三視圖如圖所示,則該幾何體的體積是( ) A. B. C.2+ D.4+ 解析:由三視圖可知,該幾何體為一個(gè)半徑為1的半球與一個(gè)底面半徑為1,高為2的半圓柱組合而成的組合體,故其體積V=π13+π122=π,故選B. 答案:B 4.(2018高考全國卷Ⅰ)在長(zhǎng)方體ABCDA1B1C1D1中,AB=BC=2,AC1與平面BB1C1C所成的角為30,則該長(zhǎng)方體的體積為( ) A.8 B.6 C.8 D.8 解析:如圖,連接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B為直線AC1與平面BB1C1C所成的角,∴∠AC1B=30.又AB=BC=2,在Rt△ABC1中,AC1==4,在Rt△ACC1中,CC1===2, ∴V長(zhǎng)方體=ABBCCC1 =222=8. 故選C. 答案:C 【類題通法】 1.活用求幾何體的表面積的方法 (1)求表面積問題的基本思路是將立體幾何問題轉(zhuǎn)化為平面幾何問題,即空間圖形平面化,這是解決立體幾何的主要出發(fā)點(diǎn). (2)求不規(guī)則幾何體的表面積時(shí),通常將所給幾何體分割成基本的柱、錐、臺(tái)體,先求這些柱、錐、臺(tái)體的表面積,再通過求和或作差得幾何體的表面積. 2.活用求空間幾何體體積的常用方法 (1)公式法:直接根據(jù)相關(guān)的體積公式計(jì)算. (2)等積法:根據(jù)體積計(jì)算公式,通過轉(zhuǎn)換空間幾何體的底面和高使得體積計(jì)算更容易,或是求出一些體積比等. (3)割補(bǔ)法:把不能直接計(jì)算體積的空間幾何體進(jìn)行適當(dāng)分割或補(bǔ)形,轉(zhuǎn)化為易計(jì)算體積的幾何體. 空間幾何體與球的切、接問題 授課提示:對(duì)應(yīng)學(xué)生用書第36頁 [悟通——方法結(jié)論] 1.解決與球有關(guān)的“切”“接”問題,一般要過球心及多面體中的特殊點(diǎn)或過線作截面,把空間問題轉(zhuǎn)化為平面問題,從而尋找?guī)缀误w各元素之間的關(guān)系. 2.記住幾個(gè)常用的結(jié)論: (1)正方體的棱長(zhǎng)為a,球的半徑為R. ①正方體的外接球,則2R=a; ②正方體的內(nèi)切球,則2R=a; ③球與正方體的各棱相切,則2R=a. (2)在長(zhǎng)方體的同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,外接球的半徑為R,則2R=. (3)正四面體的外接球與內(nèi)切球的半徑之比為3∶1. (1)(2017高考全國卷Ⅲ)已知圓柱的高為1,它的兩個(gè)底面的圓周在直徑為2的同一個(gè)球的球面上,則該圓柱的體積為( ) A.π B. C. D. 解析:設(shè)圓柱的底面半徑為r,則r2=12-2=,所以,圓柱的體積V=π1=,故選B. 答案:B (2)(2017高考全國卷Ⅰ)已知三棱錐SABC的所有頂點(diǎn)都在球O的球面上,SC是球O的直徑.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐SABC的體積為9,則球O的表面積為________. 解析:如圖,連接AO,OB, ∵SC為球O的直徑, ∴點(diǎn)O為SC的中點(diǎn), ∵SA=AC,SB=BC, ∴AO⊥SC,BO⊥SC, ∵平面SCA⊥平面SCB,平面SCA∩平面SCB=SC, ∴AO⊥平面SCB, 設(shè)球O的半徑為R, 則OA=OB=R,SC=2R. ∴VSABC=VASBC=S△SBCAO =AO, 即9=R,解得R=3, ∴球O的表面積為S=4πR2=4π32=36π. 答案:36π 【類題通法】 掌握“切”“接”問題的處理方法 (1)“切”的處理:解決與球有關(guān)的內(nèi)切問題主要是指球內(nèi)切多面體與旋轉(zhuǎn)體,解答時(shí)要先找準(zhǔn)切點(diǎn),通過作截面來解決.如果內(nèi)切的是多面體,則多通過多面體過球心的對(duì)角面來作截面. (2)“接”的處理:把一個(gè)多面體的幾個(gè)頂點(diǎn)放在球面上即球的外接問題.解決這類問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離等于球的半徑. [練通——即學(xué)即用] 1.(2018湘東五校聯(lián)考)已知等腰直角三角形ABC中,AB=AC=2,D,E分別為AB,AC的中點(diǎn),沿DE將△ABC折成直二面角(如圖),則四棱錐ADECB的外接球的表面積為________. 解析:取DE的中點(diǎn)M,BC的中點(diǎn)N,連接MN(圖略),由題意知,MN⊥平面ADE,因?yàn)椤鰽DE是等腰直角三角形,所以△ADE的外接圓的圓心是點(diǎn)M,四棱錐ADECB的外接球的球心在直線MN上,又等腰梯形DECB的外接圓的圓心在MN上,所以四棱錐ADECB的外接球的球心就是等腰梯形DECB的外接圓的圓心.連接BE,易知△BEC是鈍角三角形,所以等腰梯形DECB的外接圓的圓心在等腰梯形DECB的外部.設(shè)四棱錐ADECB的外接球的半徑為R,球心到BC的距離為d,則解得R2=,故四棱錐ADECB的外接球的表面積S=4πR2=10π. 答案:10π 2.(2018合肥模擬)如圖,已知平面四邊形ABCD滿足AB=AD=2,∠A=60?,∠C=90?,將△ABD沿對(duì)角線BD翻折,使平面ABD⊥平面CBD,則四面體ABCD外接球的體積為________. 解析:在四面體ABCD中,∵AB=AD=2,∠BAD=60?,∴△ABD為正三角形,設(shè)BD的中點(diǎn)為M,連接AM,則AM⊥BD,又平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,∴AM⊥平面CBD.∵△CBD為直角三角形,∴其外接圓的圓心是斜邊BD的中點(diǎn)M,由球的性質(zhì)知,四面體ABCD外接球的球心必在線段AM上,又△ABD為正三角形,∴球心是△ABD的中心,則外接球的半徑為2=,∴四面體ABCD外接球的體積為π()3=. 答案: 授課提示:對(duì)應(yīng)學(xué)生用書第123頁 一、選擇題 1.(2018廣州模擬)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的正視圖(等腰直角三角形)和側(cè)視圖,且該幾何體的體積為,則該幾何體的俯視圖可以是( ) 解析:由題意可得該幾何體可能為四棱錐,如圖所示,其高為2,底面為正方形,面積為22=4,因?yàn)樵搸缀误w的體積為42=,滿足條件,所以俯視圖可以為一個(gè)直角三角形.故選D. 答案:D 2.(2018高考全國卷Ⅰ)已知圓柱的上、下底面的中心分別為O1、O2,過直線O1O2的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為( ) A.12π B.12π C.8π D.10π 解析:設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由x2=8,得x=2,∴S圓柱表=2S底+S側(cè)=2π()2+2π2=12π. 故選B. 答案:B 3.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( ) A. B. C. D. (2-)π 解析:本題考查空間幾何體的三視圖和體積,意在考查考生的空間想象能力和計(jì)算能力. 由三視圖可知該幾何體由半球內(nèi)挖去一個(gè)同底的圓錐得到,所以該幾何體的體積為π13-π121=,選擇B. 答案:B 4.(2018合肥模擬)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積為( ) A.5π+18 B.6π+18 C.8π+6 D.10π+6 解析:由三視圖可知,該幾何體由一個(gè)半圓柱與兩個(gè)半球構(gòu)成,故其表面積為4π12+2π13+2π12+32=8π+6.故選C. 答案:C 5.(2018遼寧五校聯(lián)考)如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是三棱錐的三視圖,則此三棱錐的體積是( ) A.8 B.16 C.24 D.48 解析:由三視圖還原三棱錐的直觀圖,如圖中三棱錐PABC所示,且長(zhǎng)方體的長(zhǎng)、寬、高分別為6,2,4,△ABC是直角三角形,AB⊥BC,AB=2,BC=6,三棱錐PABC的高為4,故其體積為624=8,故選A. 答案:A 6.(2018沈陽模擬)某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積是( ) A.4+4 B.4+2 C.8+4 D. 解析:由三視圖可知該幾何體是一個(gè)四棱錐,記為四棱錐PABCD,如圖所示,其中PA⊥底面ABCD,四邊形ABCD是正方形,且PA=2,AB=2,PB=2,所以該四棱錐的側(cè)面積S是四個(gè)直角三角形的面積和,即S=2(22+22)=4+4,故選A. 答案:A 7.(2018河北五校聯(lián)考)某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是( ) A.13 B.14 C.15 D.16 解析:所求幾何體可看作是將長(zhǎng)方體截去兩個(gè)三棱柱得到的幾何體,在長(zhǎng)方體中還原該幾何體,如圖中ABCDA′B′C′D′所示,長(zhǎng)方體的長(zhǎng)、寬、高分別為4,2,3,兩個(gè)三棱柱的高為2,底面是兩直角邊長(zhǎng)分別為3和1.5的直角三角形,故該幾何體的體積V=423-232=15,故選C. 答案:C 8.(2018聊城模擬)在三棱錐PABC中,已知PA⊥底面ABC,∠BAC=120?,PA=AB=AC=2,若該三棱錐的頂點(diǎn)都在同一個(gè)球面上,則該球的表面積為( ) A.10π B.18π C.20π D.9π 解析:該三棱錐為圖中正六棱柱內(nèi)的三棱錐PABC,PA=AB=AC=2,所以該三棱錐的外接球即該六棱柱的外接球,所以外接球的直徑2R==2?R=,所以該球的表面積為4πR2=20π. 答案:C 9.(2018高考全國卷Ⅰ)某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示.圓柱表面上的點(diǎn)M在正視圖上的對(duì)應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在左視圖上的對(duì)應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長(zhǎng)度為( ) A.2 B.2 C.3 D.2 解析:先畫出圓柱的直觀圖,根據(jù)題圖的三視圖可知點(diǎn)M,N的位置如圖①所示. 圓柱的側(cè)面展開圖及M,N的位置(N為OP的四等分點(diǎn))如圖②所示,連接MN,則圖中MN即為M到N的最短路徑. ON=16=4,OM=2, ∴|MN|===2. 故選B. 答案:B 10.在正三棱柱ABCA1B1C1中,AB=2,AA1=3,點(diǎn)M是BB1的中點(diǎn),則三棱錐C1AMC的體積為( ) A. B. C.2 D.2 解析:取BC的中點(diǎn)D,連接AD.在正三棱柱ABCA1B1C1中,△ABC為正三角形,所以AD⊥BC,又BB1⊥平面ABC,AD?平面ABC,所以BB1⊥AD,又BB1∩BC=B,所以AD⊥平面BCC1B1,即AD⊥平面MCC1,所以點(diǎn)A到平面MCC1的距離就是AD.在正三角形ABC中,AB=2,所以AD=,又AA1=3,點(diǎn)M是BB1的中點(diǎn),所以S△MCC1=S矩形BCC1B1=23=3,所以VC1-AMC=VAMCC1=3=. 答案:A 11.如圖,四棱錐PABCD的底面ABCD為平行四邊形,NB=2PN,則三棱錐NPAC與三棱錐DPAC的體積比為( ) A.1∶2 B.1∶8 C.1∶6 D.1∶3 解析:由NB=2PN可得=.設(shè)三棱錐NPAC的高為h1,三棱錐BPAC的高為h,則==.又四邊形ABCD為平行四邊形,所以點(diǎn)B到平面PAC的距離與點(diǎn)D到平面PAC的距離相等,所以三棱錐NPAC與三棱錐DPAC的體積比為==. 答案:D 12.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),∠ASC=∠BSC=30?,則棱錐SABC的體積最大為( ) A.2 B. C. D.2 解析:如圖,因?yàn)榍虻闹睆綖镾C,且SC=4,∠ASC=∠BSC=30?,所以∠SAC=∠SBC=90?,AC=BC=2,SA=SB=2,所以S△SBC=22=2,則當(dāng)點(diǎn)A到平面SBC的距離最大時(shí),棱錐ASBC即SABC的體積最大,此時(shí)平面SAC⊥平面SBC,點(diǎn)A到平面SBC的距離為2sin 30?=,所以棱錐SABC的體積最大為2=2,故選A. 答案:A 二、填空題 13.(2018洛陽統(tǒng)考)已知點(diǎn)A,B,C,D均在球O上,AB=BC=,AC=2.若三棱錐DABC體積的最大值為3,則球O的表面積為________. 解析:由題意可得,∠ABC=,△ABC的外接圓半徑r=,當(dāng)三棱錐的體積最大時(shí),VDABC=S△ABCh(h為D到底面ABC的距離),即3=h?h=3,即R+=3(R為外接球半徑),解得R=2,∴球O的表面積為4π22=16π. 答案:16π 14.已知某幾何體的三視圖如圖,其中正視圖中半圓直徑為4,則該幾何體的體積為________. 解析:由三視圖可知該幾何體為一個(gè)長(zhǎng)方體挖掉半個(gè)圓柱,所以其體積為248-π222=64-4π. 答案:64-4π 15.某幾何體的三視圖如圖所示,則該幾何體中,面積最大的側(cè)面的面積為________. 解析:由三視圖可知,幾何體的直觀圖如圖所示,平面AED⊥平面BCDE,四棱錐ABCDE的高為1,四邊形BCDE是邊長(zhǎng)為1的正方形,則S△ABC=S△ABE=1=,S△ADE=,S△ACD=1=,故面積最大的側(cè)面的面積為. 答案: 16.(2018福州四校聯(lián)考)已知三棱錐ABCD的所有頂點(diǎn)都在球O的球面上,AB為球O的直徑,若該三棱錐的 體積為,BC=3,BD=,∠CBD=90?,則球O的體積為________. 解析:設(shè)A到平面BCD的距離為h,∵三棱錐的體積為,BC=3,BD=,∠CBD=90?,∴3h=,∴h=2,∴球心O到平面BCD的距離為1.設(shè)CD的中點(diǎn)為E,連接OE,則由球的截面性質(zhì)可得OE⊥平面CBD,∵△BCD外接圓的直徑CD=2,∴球O的半徑OD=2,∴球O的體積為. 答案:- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)一本策略復(fù)習(xí) 專題四 立體幾何 第一講 空間幾何體教案 2019 高考 數(shù)學(xué) 策略 復(fù)習(xí) 專題 第一 空間 幾何體 教案
鏈接地址:http://www.hcyjhs8.com/p-6354258.html