《(天津?qū)S茫?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 8.5 空間向量及其應(yīng)用、空間角與距離精練.docx》由會員分享,可在線閱讀,更多相關(guān)《(天津?qū)S茫?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 8.5 空間向量及其應(yīng)用、空間角與距離精練.docx(50頁珍藏版)》請在裝配圖網(wǎng)上搜索。
8.5 空間向量及其應(yīng)用、空間角與距離
挖命題
【考情探究】
考點(diǎn)
內(nèi)容解讀
5年考情
預(yù)測熱度
考題示例
考向
關(guān)聯(lián)考點(diǎn)
1.用向量證明空間中的平行和垂直關(guān)系
1.理解直線的方向向量與平面的法向量
2.能用向量語言表述直線與直線、直線與平面、平面與平面的垂直、平行關(guān)系
3.能用向量法證明有關(guān)直線和平面位置關(guān)系的一些定理(包括三垂線定理)
2018天津,17
2017天津,17
用向量法求空間角的正弦值、用向量法證明空間中直線與平面的平行關(guān)系
空間角問題
★★★
2016天津,17
用向量法求空間角的正弦值、用向量法證明空間中直線與平面的平行關(guān)系
求線面角的正弦值
2.用向量求空間角與距離
1.能用向量法解決直線與直線、直線與平面、平面與平面的夾角的計算問題
2.能用向量法解決點(diǎn)面、線面、面面距離問題,了解向量方法在立體幾何問題中的應(yīng)用
2015天津,17
2014天津,17
用向量法求空間角
線面平行的判定、線線垂直的判定
★★★
分析解讀 1.能運(yùn)用共線向量、共面向量、空間向量基本定理以及有關(guān)結(jié)論證明點(diǎn)共線、點(diǎn)共面、線共面及線線、線面的平行與垂直問題;會求線線角、線面角;會求點(diǎn)點(diǎn)距、點(diǎn)面距等問題,從而培養(yǎng)用向量法思考問題和解決問題的能力.2.會利用空間向量的坐標(biāo)運(yùn)算、兩點(diǎn)間的距離公式、夾角公式以及相關(guān)結(jié)論解決有關(guān)平行、垂直、長度、角、距離等問題,從而培養(yǎng)準(zhǔn)確無誤的運(yùn)算能力.3.本節(jié)內(nèi)容在高考中延續(xù)解答題的形式,以多面體為載體,求空間角的命題趨勢較強(qiáng),屬中檔題.
破考點(diǎn)
【考點(diǎn)集訓(xùn)】
考點(diǎn)一 用向量證明空間中的平行和垂直關(guān)系
1.(2017浙江,19,15分)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(1)證明:CE∥平面PAB;
(2)求直線CE與平面PBC所成角的正弦值.
解析 (1)證明:設(shè)AD的中點(diǎn)為O,連接OB,OP.
∵△PAD是以AD為斜邊的等腰直角三角形,∴OP⊥AD.
∵BC=12AD=OD,且BC∥OD,
∴四邊形BCDO為平行四邊形,又∵CD⊥AD,
∴OB⊥AD,∵OP∩OB=O,
∴AD⊥平面OPB.
過點(diǎn)O在平面POB內(nèi)作OB的垂線OM,交PB于M,
以O(shè)為原點(diǎn),OB所在直線為x軸,OD所在直線為y軸,OM所在直線為z軸,建立空間直角坐標(biāo)系,如圖.
設(shè)CD=1,則有A(0,-1,0),B(1,0,0),C(1,1,0),D(0,1,0).
設(shè)P(x,0,z)(z>0),由PC=2,OP=1,
得(x-1)2+1+z2=4,x2+z2=1,解得x=-12,z=32,
即點(diǎn)P-12,0,32,
而E為PD的中點(diǎn),∴E-14,12,34.
設(shè)平面PAB的法向量為n=(x1,y1,z1),
∵AP=-12,1,32,AB=(1,1,0),
∴-12x1+y1+32z1=0,x1+y1=0?x1=-y1,z1=-3y1,
取y1=-1,得n=(1,-1,3).
而CE=-54,-12,34,則CEn=0,而CE?平面PAB,
∴CE∥平面PAB.
(2)設(shè)平面PBC的法向量為m=(x2,y2,z2),
∵BC=(0,1,0),BP=-32,0,32,
∴y2=0,-32x2+32z2=0,取x2=1,得m=(1,0,3).
設(shè)直線CE與平面PBC所成角為θ,
則sinθ=|cos
|=|CEm||CE||m|=28,
故直線CE與平面PBC所成角的正弦值為28.
方法總結(jié) 1.證明直線與平面平行的方法.(例:求證:l∥α)
①利用線面平行的判定定理:在平面α內(nèi)找到一條與直線l平行的直線m,從而得到l∥α.
②利用面面平行的性質(zhì):過直線l找到(或作出)一個平面β,使得β∥α,從而得l∥α.
③向量法:(i)求出平面α的法向量n和直線l的方向向量l,證明nl=0,結(jié)合l?α可得l∥α.
(ii)證明直線l的方向向量l能被平面α內(nèi)的兩個基向量所表示,結(jié)合l?α可得l∥α.
2.求線面角的方法.
①定義法:作出線面角,解三角形即可.
②解斜線段、射影、垂線段構(gòu)成的三角形.
例:求AB與平面α所成角θ的正弦值,其中A∈α.只需求出點(diǎn)B到平面α的距離d(通常由等體積法求d),由sinθ=dAB得結(jié)論.
③向量法:求出平面α的法向量n,設(shè)直線AB與α所成角為θ,則sinθ=|cos|.
最好是畫出圖形,否則容易出錯.
考點(diǎn)二 空間角與距離
2.(2018課標(biāo)Ⅱ,9,5分)在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=3,則異面直線AD1與DB1所成角的余弦值為( )
A.15 B.56 C.55 D.22
答案 C
3.已知正方形ABCD的邊長為1,PD⊥平面ABCD,且PD=1,E,F分別為AB,BC的中點(diǎn).
(1)求點(diǎn)D到平面PEF的距離;
(2)求直線AC到平面PEF的距離.
解析 (1)建立如圖所示的空間直角坐標(biāo)系D-xyz,
則D(0,0,0),P(0,0,1),A(1,0,0),C(0,1,0),E1,12,0,F12,1,0,
∴PE=1,12,-1,
EF=-12,12,0,
DP=(0,0,1).
設(shè)平面PEF的法向量為n=(x,y,z).
則有nPE=0,nEF=0?x+12y-z=0,-12x+12y=0?z=32x,y=x.
令x=1,則n=1,1,32.
∴點(diǎn)D到平面PEF的距離為
d=|DPn||n|=32172=31717.
(2)直線AC到平面PEF的距離等于點(diǎn)A到平面PEF的距離.
∵AE=0,12,0,平面PEF的一個法向量為n=1,1,32,
∴點(diǎn)A到平面PEF的距離為d1=|AEn||n|=12172=1717.
∴直線AC到平面PEF的距離為1717.
4.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面AA1C1C,AA1=AB=AC=2,∠A1AC=60.過AA1的平面交B1C1于點(diǎn)E,交BC于點(diǎn)F.
(1)求證:A1C⊥平面ABC1;
(2)求證:四邊形AA1EF為平行四邊形;
(3)若BFBC=23,求二面角B-AC1-F的大小.
解析 (1)證明:因?yàn)锳B⊥平面AA1C1C,A1C?平面AA1C1C,所以A1C⊥AB.
在三棱柱ABC-A1B1C1中,AA1=AC,所以平行四邊形AA1C1C為菱形,所以A1C⊥AC1.
又AB∩AC1=A,AB,AC1?平面ABC1,所以A1C⊥平面ABC1.
(2)證明:因?yàn)锳1A∥B1B,A1A?平面BB1C1C,BB1?平面BB1C1C,所以A1A∥平面BB1C1C.
因?yàn)槠矫鍭A1EF∩平面BB1C1C=EF,所以A1A∥EF.
因?yàn)槠矫鍭BC∥平面A1B1C1,平面AA1EF∩平面ABC=AF,平面AA1EF∩平面A1B1C1=A1E,
所以A1E∥AF,
所以四邊形AA1EF為平行四邊形.
(3)在平面AA1C1C內(nèi),過A作Az⊥AC.
因?yàn)锳B⊥平面AA1C1C,所以AB,AC,Az兩兩垂直.
故可建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz.
則A(0,0,0),B(2,0,0),C(0,2,0),A1(0,1,3),C1(0,3,3),所以BC=(-2,2,0),AC1=(0,3,3).
因?yàn)锽FBC=23,所以BF=23BC=-43,43,0,
所以F23,43,0,
所以AF=23,43,0.
由(1)得平面ABC1的一個法向量為A1C=(0,1,-3).
設(shè)平面AC1F的法向量為n=(x,y,z),
則nAC1=0,nAF=0,
即3y+3z=0,23x+43y=0.
令y=1,則x=-2,z=-3,
所以n=(-2,1,-3).
所以cos=nA1C|n||A1C|=22.
由圖可知二面角B-AC1-F的平面角是銳角,
所以二面角B-AC1-F的大小為45.
思路分析 (1)通過證明四邊形AA1C1C為菱形,得出A1C⊥AC1,從而證得A1C⊥平面ABC1;
(2)由面面平行的性質(zhì)定理、線面平行的性質(zhì)定理分別得到兩組對邊互相平行,進(jìn)而證明四邊形AA1EF為平行四邊形;
(3)由平面的法向量和夾角公式求解.
方法總結(jié) 正確掌握線面平行和垂直的證明方法和計算空間角的基本方法是求解立體幾何問題的基礎(chǔ)和保障,務(wù)必“記牢活用.”
煉技法
【方法集訓(xùn)】
方法1 空間角與距離的向量求法
1.正四棱錐S-ABCD的八條棱長都相等,SB的中點(diǎn)是E,則異面直線AE,SD所成角的余弦值為 .
答案 33
2.在正方體ABCD-A1B1C1D1中,E為A1B1的中點(diǎn),則異面直線D1E和BC1間的距離為 .
答案 263
方法2 用向量法求立體幾何中的探索性問題
3.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,E為AD的中點(diǎn),PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.
(1)求證:平面PAD⊥平面PCD;
(2)求二面角C-PB-E的余弦值;
(3)在線段PE上是否存在點(diǎn)M,使得DM∥平面PBC?若存在,求出點(diǎn)M的位置;若不存在,請說明理由.
解析 (1)證明:因?yàn)槠矫鍼AD⊥平面ABCD,PA⊥AD,
且平面PAD∩平面ABCD=AD,
所以PA⊥平面ABCD.
又CD?平面ABCD,
所以PA⊥CD.
又因?yàn)锽E⊥AD,BE∥CD,
所以CD⊥AD.
又因?yàn)镻A∩AD=A,PA,AD?平面PAD,
所以CD⊥平面PAD.
因?yàn)镃D?平面PCD,
所以平面PAD⊥平面PCD.
(2)以E為原點(diǎn),以EB,ED的方向分別為x軸,y軸的正方向,建立如圖所示的空間直角坐標(biāo)系E-xyz,
則E(0,0,0),P(0,-2,2),A(0,-2,0),B(2,0,0),C(1,2,0),D(0,2,0),
所以PB=(2,2,-2),BC=(-1,2,0),EP=(0,-2,2).
設(shè)平面PBC的法向量為n=(x,y,z),
則nPB=0,nBC=0,即2x+2y-2z=0,-x+2y=0.
令y=1,則x=2,z=3,
所以n=(2,1,3).
設(shè)平面PBE的法向量為m=(a,b,c),
則mPB=0,mEP=0,即2a+2b-2c=0,-2b+2c=0.
令b=1,則a=0,c=1,
所以m=(0,1,1).
所以cos=nm|n||m|=20+11+31142=277.
由圖可知,所求二面角為銳角,
所以二面角C-PB-E的余弦值為277.
(3)“在線段PE上存在點(diǎn)M,使得DM∥平面PBC”等價于“在線段PE上存在點(diǎn)M,使其滿足DMn=0”.
設(shè)PM=λPE,λ∈[0,1].
因?yàn)镻E=(0,2,-2),所以PM=(0,2λ,-2λ),
則M(0,2λ-2,2-2λ),所以DM=(0,2λ-4,2-2λ).
由(2)知平面PBC的一個法向量為n=(2,1,3),
所以DMn=2λ-4+6-6λ=0,
解得λ=12.
因?yàn)棣?12∈[0,1],
所以在線段PE上存在點(diǎn)M,使得DM∥平面PBC,此時點(diǎn)M為PE的中點(diǎn).
4.如圖1,在平面五邊形ABCDE中,AB∥CD,∠BAD=90,AB=2,CD=1,△ADE是邊長為2的正三角形,現(xiàn)將△ADE沿AD折起,得到四棱錐E-ABCD(如圖2),且DE⊥AB.
(1)求證:平面ADE⊥平面ABCD;
(2)求平面BCE與平面ADE所成銳二面角的大小;
(3)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求出EFEA的值;若不存在,請說明理由.
解析 (1)證明:由已知得AB⊥AD,因?yàn)锳B⊥DE,
且AD∩DE=D,AD,DE?平面ADE,所以AB⊥平面ADE.
又AB?平面ABCD,所以平面ADE⊥平面ABCD.
(2)設(shè)AD的中點(diǎn)為O,連接EO.
因?yàn)椤鰽DE是正三角形,
所以EA=ED,所以EO⊥AD.
因?yàn)槠矫鍭DE⊥平面ABCD,
平面ADE∩平面ABCD=AD,EO?平面ADE,
所以EO⊥平面ABCD.
在平面ABCD內(nèi)過O點(diǎn)作垂直于AD的直線交CB于點(diǎn)M.
以O(shè)為原點(diǎn),OA所在的直線為x軸,OM所在的直線為y軸,OE所在的直線為z軸,建立空間直角坐標(biāo)系O-xyz,如圖所示,
則E(0,0,3),B(1,2,0),C(-1,1,0),
所以CE=(1,-1,3),CB=(2,1,0).
設(shè)平面BCE的法向量為m=(x,y,z),
則mCE=0,mCB=0,即x-y+3z=0,2x+y=0.
令x=1,則y=-2,z=-3,
所以m=(1,-2,-3).
易知平面ADE的一個法向量為n=(0,1,0),
所以cos=mn|m||n|=-22.
所以平面BCE與平面ADE所成銳二面角的大小為π4.
(3)在棱AE上存在點(diǎn)F,使得DF∥平面BCE,此時EFEA=12.
理由:設(shè)BE的中點(diǎn)為G,連接CG,FG,
則FG∥AB,FG=12AB,
因?yàn)锳B∥CD,且CD=12AB,
所以FG∥CD,且FG=CD.
所以四邊形CDFG是平行四邊形,
所以DF∥CG.
因?yàn)镃G?平面BCE,且DF?平面BCE,
所以DF∥平面BCE.
過專題
【五年高考】
A組 自主命題天津卷題組
1.(2018天津,17,13分)如圖,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.
(1)若M為CF的中點(diǎn),N為EG的中點(diǎn),求證:MN∥平面CDE;
(2)求二面角E-BC-F的正弦值;
(3)若點(diǎn)P在線段DG上,且直線BP與平面ADGE所成的角為60,求線段DP的長.
解析 本題主要考查直線與平面平行、二面角、直線與平面所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.
依題意,可以建立以D為原點(diǎn),分別以DA,DC,DG的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系(如圖),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M0,32,1,N(1,0,2).
(1)證明:依題意DC=(0,2,0),DE=(2,0,2).
設(shè)n0=(x0,y0,z0)為平面CDE的法向量,
則n0DC=0,n0DE=0,即2y0=0,2x0+2z0=0,
不妨令z0=-1,可得n0=(1,0,-1).
又MN=1,-32,1,可得MNn0=0,
又因?yàn)橹本€MN?平面CDE,
所以MN∥平面CDE.
(2)依題意,可得BC=(-1,0,0),BE=(1,-2,2),CF=(0,-1,2).
設(shè)n=(x1,y1,z1)為平面BCE的法向量,
則nBC=0,nBE=0,即-x1=0,x1-2y1+2z1=0,
不妨令z1=1,可得n=(0,1,1).
設(shè)m=(x2,y2,z2)為平面BCF的法向量,
則mBC=0,mCF=0,即-x2=0,-y2+2z2=0,
不妨令z2=1,可得m=(0,2,1).
因此有cos=mn|m||n|=31010,于是sin=1010.
所以,二面角E-BC-F的正弦值為1010.
(3)設(shè)線段DP的長為h(h∈[0,2]),則點(diǎn)P的坐標(biāo)為(0,0,h),可得BP=(-1,-2,h).
易知,DC=(0,2,0)為平面ADGE的一個法向量,
故|cos|=|BPDC||BP||DC|=2h2+5,
由題意,可得2h2+5=sin60=32,
解得h=33∈[0,2].
所以,線段DP的長為33.
方法歸納 利用空間向量解決立體幾何問題的一般步驟:
(1)審清題意并建系.利用條件分析問題,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;
(2)確定相關(guān)點(diǎn)的坐標(biāo).結(jié)合建系過程與圖形,準(zhǔn)確地寫出相關(guān)點(diǎn)的坐標(biāo);
(3)確定直線的方向向量和平面的法向量.利用點(diǎn)的坐標(biāo)求出相關(guān)直線的方向向量和平面的法向量,若已知某直線垂直某平面,可直接取該直線的方向向量為該平面的法向量;
(4)轉(zhuǎn)化為向量運(yùn)算.將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系,空間角轉(zhuǎn)化為向量的夾角問題去論證、求解;
(5)問題還原.結(jié)合條件與圖形,作出結(jié)論(注意角的范圍).
2.(2017天津,17,13分)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BAC=90.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角C-EM-N的正弦值;
(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為721,求線段AH的長.
解析 本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.
如圖,以A為原點(diǎn),分別以AB,AC,AP方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).
(1)證明:DE=(0,2,0),DB=(2,0,-2).設(shè)n=(x,y,z)為平面BDE的法向量,則nDE=0,nDB=0,即2y=0,2x-2z=0.
不妨設(shè)z=1,可得n=(1,0,1).
又MN=(1,2,-1),可得MNn=0.
因?yàn)镸N?平面BDE,
所以MN∥平面BDE.
(2)易知n1=(1,0,0)為平面CEM的一個法向量.
設(shè)n2=(x,y,z)為平面EMN的法向量,則n2EM=0,n2MN=0.
因?yàn)镋M=(0,-2,-1),MN=(1,2,-1),所以-2y-z=0,x+2y-z=0.
不妨設(shè)y=1,可得n2=(-4,1,-2).
因此有cos=n1n2|n1||n2|=-421,
于是sin=10521.
所以,二面角C-EM-N的正弦值為10521.
(3)依題意,設(shè)AH=h(0≤h≤4),則H(0,0,h),進(jìn)而可得NH=(-1,-2,h),BE=(-2,2,2).由已知,得|cos|=|NHBE||NH||BE|=|2h-2|h2+523=721,
整理得10h2-21h+8=0,
解得h=85或h=12.
所以,線段AH的長為85或12.
方法總結(jié) 利用空間向量法證明線面位置關(guān)系與計算空間角的步驟:(1)根據(jù)題目中的條件,充分利用垂直關(guān)系,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,盡量使相關(guān)點(diǎn)在坐標(biāo)軸上,求出相關(guān)點(diǎn)的坐標(biāo);(2)求出相關(guān)直線的方向向量及相關(guān)平面的法向量,根據(jù)題目的要求,選擇適當(dāng)?shù)墓?將相關(guān)的坐標(biāo)代入進(jìn)行求解或證明;(3)檢驗(yàn),得出最后結(jié)論.
3.(2016天津,17,13分)如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)G為AB的中點(diǎn),AB=BE=2.
(1)求證:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)設(shè)H為線段AF上的點(diǎn),且AH=23HF,求直線BH和平面CEF所成角的正弦值.
解析 依題意,OF⊥平面ABCD,如圖,以O(shè)為原點(diǎn),分別以AD,BA,OF的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系,依題意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).
(1)證明:依題意,AD=(2,0,0),AF=(1,-1,2).
設(shè)n1=(x,y,z)為平面ADF的法向量,
則n1AD=0,n1AF=0,即2x=0,x-y+2z=0.
不妨設(shè)z=1,可得n1=(0,2,1),
又EG=(0,1,-2),可得EGn1=0,
又因?yàn)橹本€EG?平面ADF,
所以EG∥平面ADF.
(2)易證,OA=(-1,1,0)為平面OEF的一個法向量.
依題意,EF=(1,1,0),CF=(-1,1,2).
設(shè)n2=(x,y,z)為平面CEF的法向量,則n2EF=0,n2CF=0,
即x+y=0,-x+y+2z=0.不妨設(shè)x=1,可得n2=(1,-1,1).
因此有cos=OAn2|OA||n2|=-63,
于是sin=33.
所以,二面角O-EF-C的正弦值為33.
(3)由AH=23HF,得AH=25AF.
因?yàn)锳F=(1,-1,2),
所以AH=25AF=25,-25,45,
進(jìn)而有H-35,35,45,
從而BH=25,85,45,
因此cos=BHn2|BH||n2|=-721.
所以,直線BH和平面CEF所成角的正弦值為721.
思路分析 (1)利用平面的法向量和直線的方向向量的數(shù)量積為0證明線面平行.(2)求出兩平面法向量夾角的余弦值,進(jìn)而得二面角的正弦值.(3)求出直線的方向向量與平面法向量夾角的余弦值,進(jìn)而得線面角的正弦值.
4.(2015天津,17,13分)如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=5,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正弦值;
(3)設(shè)E為棱A1B1上的點(diǎn).若直線NE和平面ABCD所成角的正弦值為13,求線段A1E的長.
解析 如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,
依題意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).
又因?yàn)镸,N分別為B1C和D1D的中點(diǎn),
所以M1,12,1,N(1,-2,1).
(1)證明:依題意,可得n=(0,0,1)為平面ABCD的一個法向量.MN=0,-52,0.由此可得MNn=0,
又因?yàn)橹本€MN?平面ABCD,
所以MN∥平面ABCD.
(2)AD1=(1,-2,2),AC=(2,0,0).
設(shè)n1=(x,y,z)為平面ACD1的法向量,則n1AD1=0,n1AC=0,
即x-2y+2z=0,2x=0.不妨設(shè)z=1,可得n1=(0,1,1).
設(shè)n2=(x,y,z)為平面ACB1的法向量,
則n2AB1=0,n2AC=0,
又AB1=(0,1,2),得y+2z=0,2x=0.
不妨設(shè)z=1,可得n2=(0,-2,1).
因此有cos=n1n2|n1||n2|=-1010,
于是sin=31010.
所以,二面角D1-AC-B1的正弦值為31010.
(3)依題意,可設(shè)A1E=λA1B1,其中λ∈[0,1],則E(0,λ,2),從而NE=(-1,λ+2,1).
又n=(0,0,1)為平面ABCD的一個法向量,
由已知,得cos=NEn|NE||n|
=1(-1)2+(λ+2)2+12=13,
整理得λ2+4λ-3=0,
又因?yàn)棣恕蔥0,1],解得λ=7-2.
所以,線段A1E的長為7-2.
評析本小題主要考查直線與平面平行和垂直、二面角、直線與平面所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算能力和推理論證能力.
5.(2014天津,17,13分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
解析 依題意,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系(如圖),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E為棱PC的中點(diǎn),得E(1,1,1).
(1)證明:向量BE=(0,1,1),DC=(2,0,0),故BEDC=0.
所以BE⊥DC.
(2)向量BD=(-1,2,0),PB=(1,0,-2).設(shè)n=(x,y,z)為平面PBD的法向量,
則nBD=0,nPB=0,即-x+2y=0,x-2z=0.
不妨令y=1,可得n=(2,1,1)為平面PBD的一個法向量.
于是有cos=nBE|n||BE|=262=33.
所以直線BE與平面PBD所成角的正弦值為33.
(3)向量BC=(1,2,0),CP=(-2,-2,2),AC=(2,2,0),AB=(1,0,0).由點(diǎn)F在棱PC上,設(shè)CF=λCP,0≤λ≤1.
故BF=BC+CF=BC+λCP=(1-2λ,2-2λ,2λ).由BF⊥AC,得BFAC=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF=-12,12,32.設(shè)n1=(x,y,z)為平面FAB的法向量,則n1AB=0,n1BF=0,即x=0,-12x+12y+32z=0.
不妨令z=1,可得n1=(0,-3,1)為平面FAB的一個法向量.取平面ABP的法向量n2=(0,1,0),則
cos=n1n2|n1||n2|=-3101=-31010.
易知,二面角F-AB-P是銳角,所以其余弦值為31010.
B組 統(tǒng)一命題、省(區(qū)、市)卷題組
考點(diǎn)一 用向量證明空間中的平行和垂直關(guān)系
(2018浙江,19,15分)如圖,已知多面體ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120,A1A=4,C1C=1,AB=BC=B1B=2.
(1)證明:AB1⊥平面A1B1C1;
(2)求直線AC1與平面ABB1所成的角的正弦值.
解析 (1)證明:如圖,以AC的中點(diǎn)O為原點(diǎn),分別以射線OB,OC為x,y軸的正半軸,建立空間直角坐標(biāo)系O-xyz.
由題意知各點(diǎn)坐標(biāo)如下:
A(0,-3,0),B(1,0,0),A1(0,-3,4),B1(1,0,2),C1(0,3,1).
因此AB1=(1,3,2),A1B1=(1,3,-2),A1C1=(0,23,-3).
由AB1A1B1=0得AB1⊥A1B1.由AB1A1C1=0得AB1⊥A1C1.
又A1B1∩A1C1=A1,A1B1,A1C1?平面A1B1C1,
所以AB1⊥平面A1B1C1.
(2)設(shè)直線AC1與平面ABB1所成的角為θ.
由(1)可知AC1=(0,23,1),AB=(1,3,0),BB1=(0,0,2).
設(shè)平面ABB1的法向量n=(x,y,z),
則nAB=0,nBB1=0,即x+3y=0,2z=0,可取n=(-3,1,0).
所以sinθ=|cos|=|AC1n||AC1||n|=3913.
因此,直線AC1與平面ABB1所成的角的正弦值是3913.
考點(diǎn)二 空間角與距離
1.(2018課標(biāo)Ⅱ,20,12分)如圖,在三棱錐P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點(diǎn).
(1)證明:PO⊥平面ABC;
(2)若點(diǎn)M在棱BC上,且二面角M-PA-C為30,求PC與平面PAM所成角的正弦值.
解析 (1)因?yàn)锳P=CP=AC=4,O為AC的中點(diǎn),
所以O(shè)P⊥AC,且OP=23.
連接OB.因?yàn)锳B=BC=22AC,
所以△ABC為等腰直角三角形,
且OB⊥AC,OB=12AC=2.
由OP2+OB2=PB2知PO⊥OB.
由OP⊥OB,OP⊥AC知PO⊥平面ABC.
(2)如圖,以O(shè)為坐標(biāo)原點(diǎn),OB的方向?yàn)閤軸正方向,建立空間直角坐標(biāo)系O-xyz.
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,23),AP=(0,2,23).
取平面PAC的法向量OB=(2,0,0).
設(shè)M(a,2-a,0)(0=23(a-4)23(a-4)2+3a2+a2.
由已知可得|cos|=32.
所以23|a-4|23(a-4)2+3a2+a2=32.
解得a=-4(舍去)或a=43.
所以n=-833,433,-43.
又PC=(0,2,-23),所以cos=34.
所以PC與平面PAM所成角的正弦值為34.
2.(2017課標(biāo)Ⅰ,18,12分)如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90,求二面角A-PB-C的余弦值.
解析 本題考查了立體幾何中面面垂直的證明和二面角問題.
(1)由已知∠BAP=∠CDP=90,得AB⊥AP,CD⊥PD.
由于AB∥CD,故AB⊥PD,
又AP∩PD=P,AP,PD?平面PAD,從而AB⊥平面PAD.
又AB?平面PAB,
所以平面PAB⊥平面PAD.
(2)在平面PAD內(nèi)作PF⊥AD,垂足為F.
由(1)可知,AB⊥平面PAD,故AB⊥PF,
又AD∩AB=A,可得PF⊥平面ABCD.
以F為坐標(biāo)原點(diǎn),FA的方向?yàn)閤軸正方向,|AB|為單位長,建立如圖所示的空間直角坐標(biāo)系F-xyz.
由(1)及已知可得A22,0,0,P0,0,22,B22,1,0,C-22,1,0.
所以PC=-22,1,-22,CB=(2,0,0),PA=22,0,-22,AB=(0,1,0).
設(shè)n=(x1,y1,z1)是平面PCB的法向量,則
nPC=0,nCB=0,即-22x1+y1-22z1=0,2x1=0.
可取n=(0,-1,-2).
設(shè)m=(x2,y2,z2)是平面PAB的法向量,則
mPA=0,mAB=0,即22x2-22z2=0,y2=0.
可取m=(1,0,1).
則cos=nm|n||m|=-33.
易知二面角A-PB-C為鈍二面角,
所以二面角A-PB-C的余弦值為-33.
方法總結(jié) 面面垂直的證明及向量法求解二面角.
(1)面面垂直的證明
證明兩個平面互相垂直,可以在一個平面內(nèi)找一條直線l,證明直線l垂直于另一平面.
(2)利用空間向量求解幾何體中的二面角的余弦值
建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo),求出兩個半平面的法向量n1,n2,設(shè)二面角的大小為θ,則|cosθ|=|n1n2||n1||n2|,再根據(jù)二面角的范圍判斷二面角余弦值的正負(fù)情況.
3.(2017課標(biāo)Ⅱ,19,12分)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90,E是PD的中點(diǎn).
(1)證明:直線CE∥平面PAB;
(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45,求二面角M-AB-D的余弦值.
解析 本題考查了線面平行的證明和線面角、二面角的計算.
(1)取PA的中點(diǎn)F,連接EF,BF.因?yàn)镋是PD的中點(diǎn),所以EF∥AD,EF=12AD.
由∠BAD=∠ABC=90得BC∥AD,又BC=12AD,所以EF??BC,四邊形BCEF是平行四邊形,CE∥BF,又BF?平面PAB,CE?平面PAB,故CE∥平面PAB.
(2)由已知得BA⊥AD,以A為坐標(biāo)原點(diǎn),AB的方向?yàn)閤軸正方向,|AB|為單位長,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,3),PC=(1,0,-3),AB=(1,0,0).
設(shè)M(x,y,z)(0|=sin45,|z|(x-1)2+y2+z2=22,
即(x-1)2+y2-z2=0.①
又M在棱PC上,設(shè)PM=λPC,則
x=λ,y=1,z=3-3λ.②
由①,②解得x=1+22,y=1,z=-62(舍去),或x=1-22,y=1,z=62,
所以M1-22,1,62,從而AM=1-22,1,62.
設(shè)m=(x0,y0,z0)是平面ABM的法向量,
則mAM=0,mAB=0,即(2-2)x0+2y0+6z0=0,x0=0,
所以可取m=(0,-6,2).
于是cos=mn|m||n|=105.
易知所求二面角為銳角.
因此二面角M-AB-D的余弦值為105.
方法總結(jié) 本題涉及直線與平面所成的角和二面角,它們是高考熱點(diǎn)和難點(diǎn),解決此類題時常利用向量法,解題關(guān)鍵是求平面的法向量,再由向量的夾角公式求解.
解題關(guān)鍵 由線面角為45求點(diǎn)M的坐標(biāo)是解題的關(guān)鍵.
4.(2016四川,18,12分)如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90,BC=CD=12AD,E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90.
(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P-CD-A的大小為45,求直線PA與平面PCE所成角的正弦值.
解析 (1)在梯形ABCD中,AB與CD不平行.
延長AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個點(diǎn).
理由如下:
由已知,BC∥ED,且BC=ED.
所以四邊形BCDE是平行四邊形.
從而CM∥EB.又EB?平面PBE,CM?平面PBE,
所以CM∥平面PBE.
(說明:延長AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))
(2)由已知,CD⊥PA,CD⊥AD,PA∩AD=A,
所以CD⊥平面PAD.于是CD⊥PD.
從而∠PDA是二面角P-CD-A的平面角.
所以∠PDA=45.由PA⊥AB,可得PA⊥平面ABCD.
設(shè)BC=1,則在Rt△PAD中,PA=AD=2.
作Ay⊥AD,以A為原點(diǎn),以AD,AP的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,
則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),
所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2).
設(shè)平面PCE的法向量為n=(x,y,z),
由nPE=0,nEC=0,得x-2z=0,x+y=0,
設(shè)x=2,解得n=(2,-2,1).
設(shè)直線PA與平面PCE所成角為α,
則sinα=|nAP||n||AP|=2222+(-2)2+12=13.
所以直線PA與平面PCE所成角的正弦值為13.
5.(2014福建,17,13分)在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
解析 (1)證明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB?平面ABD,AB⊥BD,
∴AB⊥平面BCD.
又CD?平面BCD,∴AB⊥CD.
(2)過點(diǎn)B在平面BCD內(nèi)作BE⊥BD,如圖.
由(1)知AB⊥平面BCD,又BE?平面BCD,
∴AB⊥BE.
以B為坐標(biāo)原點(diǎn),分別以BE,BD,BA的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系.
依題意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M0,12,12,
則BC=(1,1,0),BM=0,12,12,AD=(0,1,-1).
設(shè)平面MBC的法向量為n=(x0,y0,z0),
則nBC=0,nBM=0,即x0+y0=0,12y0+12z0=0,
取z0=1,得平面MBC的一個法向量為n=(1,-1,1).
設(shè)直線AD與平面MBC所成角為θ,
則sinθ=|cos|=|nAD||n||AD|=63,
即直線AD與平面MBC所成角的正弦值為63.
評析本題主要考查空間直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸思想、函數(shù)與方程思想.
C組 教師專用題組
1.(2017山東,17,12分)如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120得到的,G是DF的中點(diǎn).
(1)設(shè)P是CE上的一點(diǎn),且AP⊥BE,求∠CBP的大小;
(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.
解析 本題考查線面垂直的證明和二面角的計算.
(1)因?yàn)锳P⊥BE,AB⊥BE,
AB,AP?平面ABP,AB∩AP=A,
所以BE⊥平面ABP,
又BP?平面ABP,
所以BE⊥BP,又∠EBC=120,
因此∠CBP=30.
(2)以B為坐標(biāo)原點(diǎn),分別以BE,BP,BA所在的直線為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系.
由題意得A(0,0,3),E(2,0,0),G(1,3,3),C(-1,3,0),
故AE=(2,0,-3),AG=(1,3,0),CG=(2,0,3),
設(shè)m=(x1,y1,z1)是平面AEG的法向量.
由mAE=0,mAG=0可得2x1-3z1=0,x1+3y1=0.
取z1=2,可得平面AEG的一個法向量m=(3,-3,2).
設(shè)n=(x2,y2,z2)是平面ACG的法向量.
由nAG=0,nCG=0可得x2+3y2=0,2x2+3z2=0.
取z2=-2,可得平面ACG的一個法向量n=(3,-3,-2).
所以cos=mn|m||n|=12.
易知所求角為銳二面角,
因此所求的角為60.
方法總結(jié) 求二面角的常見方法有兩種:一種是“找”,即根據(jù)二面角的面的特殊性(如等邊三角形、等腰三角形、直角三角形、正方形、矩形、梯形等)找二面角的平面角的頂點(diǎn),進(jìn)而作出該平面角,再通過解三角形求解;另一種是“算”,即利用空間向量的坐標(biāo)運(yùn)算,由平面的法向量和夾角公式求解.利用空間向量的運(yùn)算求二面角時,一定要注意二面角是銳二面角還是鈍二面角.
2.(2016浙江,17,15分)如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
解析 (1)證明:延長AD,BE,CF相交于一點(diǎn)K,如圖所示.
因?yàn)槠矫鍮CFE⊥平面ABC,且平面BCFE∩平面ABC=BC,AC⊥BC,
所以,AC⊥平面BCK,又BF?平面BCK,因此,BF⊥AC.
又因?yàn)镋F∥BC,BE=EF=FC=1,BC=2,
所以△BCK為等邊三角形,
且F為CK的中點(diǎn),則BF⊥CK.
又因?yàn)镃K∩AC=C,CK,AC?平面ACFD,
所以BF⊥平面ACFD.
(2)解法一:過點(diǎn)F作FQ⊥AK于Q,連接BQ.
因?yàn)锽F⊥平面ACK,
所以BF⊥AK,則AK⊥平面BQF,所以BQ⊥AK.
所以,∠BQF是二面角B-AD-F的平面角.
在Rt△ACK中,AC=3,CK=2,得FQ=31313.
在Rt△BQF中,FQ=31313,BF=3,得cos∠BQF=34.
所以,二面角B-AD-F的平面角的余弦值為34.
解法二:如圖,延長AD,BE,CF相交于一點(diǎn)K,則△BCK為等邊三角形.取BC的中點(diǎn)O,則KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以點(diǎn)O為原點(diǎn),分別以射線OB,OK的方向?yàn)閤,z的正方向,建立空間直角坐標(biāo)系O-xyz.
由題意得B(1,0,0),C(-1,0,0),K(0,0,3),A(-1,-3,0),E12,0,32,F-12,0,32.
因此,AC=(0,3,0),AK=(1,3,3),AB=(2,3,0).
設(shè)平面ACK的法向量為m=(x1,y1,z1),平面ABK的法向量為n=(x2,y2,z2).
由ACm=0,AKm=0得3y1=0,x1+3y1+3z1=0,取m=(3,0,-1);
由ABn=0,AKn=0得2x2+3y2=0,x2+3y2+3z2=0,取n=(3,-2,3).
于是,cos=mn|m||n|=34.
由圖可知所求二面角為銳角,
所以,二面角B-AD-F的平面角的余弦值為34.
評析本題主要考查空間點(diǎn)、線、面的位置關(guān)系,二面角等基礎(chǔ)知識,同時考查空間想象能力和運(yùn)算求解能力.
3.(2015江蘇,22,10分)如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.
(1)求平面PAB與平面PCD所成二面角的余弦值;
(2)點(diǎn)Q是線段BP上的動點(diǎn),當(dāng)直線CQ與DP所成的角最小時,求線段BQ的長.
解析 以{AB,AD,AP}為正交基底建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則各點(diǎn)的坐標(biāo)為B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).
(1)因?yàn)锳D⊥平面PAB,所以AD是平面PAB的一個法向量,AD=(0,2,0).
因?yàn)镻C=(1,1,-2),PD=(0,2,-2),
設(shè)平面PCD的法向量為m=(x,y,z),
則mPC=0,mPD=0,
即x+y-2z=0,2y-2z=0.
令y=1,解得z=1,x=1.
所以m=(1,1,1)是平面PCD的一個法向量.
從而cos=ADm|AD||m|=33,
由圖可知平面PAB與平面PCD所成的二面角為銳角,
所以平面PAB與平面PCD所成二面角的余弦值為33.
(2)因?yàn)锽P=(-1,0,2),
設(shè)BQ=λBP=(-λ,0,2λ)(0≤λ≤1),
又CB=(0,-1,0),
則CQ=CB+BQ=(-λ,-1,2λ),
又DP=(0,-2,2),
從而cos=CQDP|CQ||DP|=1+2λ10λ2+2.
設(shè)1+2λ=t,t∈[1,3],
則cos2=2t25t2-10t+9=291t-592+209≤910.
當(dāng)且僅當(dāng)t=95,即λ=25時,|cos|的最大值為31010.
因?yàn)閥=cosx在0,π2上是減函數(shù),所以此時直線CQ與DP所成角取得最小值.
又因?yàn)锽P=12+22=5,
所以BQ=25BP=255.
評析本題主要考查空間向量、二面角和異面直線所成角等基礎(chǔ)知識,考查運(yùn)用空間向量解決問題的能力.
4.(2015福建,17,13分)如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分別是線段BE,DC的中點(diǎn).
(1)求證:GF∥平面ADE;
(2)求平面AEF與平面BEC所成銳二面角的余弦值.
解析 (1)證法一:如圖,取AE的中點(diǎn)H,連接HG,HD,
又G是BE的中點(diǎn),
所以GH∥AB,且GH=12AB.
又F是CD的中點(diǎn),所以DF=12CD.
由四邊形ABCD是矩形得,AB∥CD,AB=CD,
所以GH∥DF,且GH=DF,
從而四邊形HGFD是平行四邊形,所以GF∥DH.
又DH?平面ADE,GF?平面ADE,所以GF∥平面ADE.
證法二:如圖,取AB中點(diǎn)M,連接MG,MF.
又G是BE的中點(diǎn),可知GM∥AE.
又AE?平面ADE,GM?平面ADE,所以GM∥平面ADE.
在矩形ABCD中,由M,F分別是AB,CD的中點(diǎn)得MF∥AD.
又AD?平面ADE,MF?平面ADE,所以MF∥平面ADE.
又因?yàn)镚M∩MF=M,GM?平面GMF,MF?平面GMF,所以平面GMF∥平面ADE.
因?yàn)镚F?平面GMF,所以GF∥平面ADE.
(2)如圖,在平面BEC內(nèi),過B點(diǎn)作BQ∥EC.因?yàn)锽E⊥CE,所以BQ⊥BE.
又因?yàn)锳B⊥平面BEC,所以AB⊥BE,AB⊥BQ.
以B為原點(diǎn),分別以BE,BQ,BA的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系,則A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).
因?yàn)锳B⊥平面BEC,所以BA=(0,0,2)為平面BEC的一個法向量.
設(shè)n=(x,y,z)為平面AEF的法向量.
又AE=(2,0,-2),AF=(2,2,-1),
由nAE=0,nAF=0得2x-2z=0,2x+2y-z=0,取z=2,得n=(2,-1,2).
從而cos=nBA|n||BA|=432=23,
所以平面AEF與平面BEC所成銳二面角的余弦值為23.
評析本題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
5.(2015重慶,19,13分)如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2.D,E分別為線段AB,BC上的點(diǎn),且CD=DE=2,CE=2EB=2.
(1)證明:DE⊥平面PCD;
(2)求二面角A-PD-C的余弦值.
解析 (1)證明:由PC⊥平面ABC,DE?平面ABC,得PC⊥DE.由CE=2,CD=DE=2得△CDE為等腰直角三角形,故CD⊥DE.由于PC∩CD=C,DE垂直于平面PCD內(nèi)兩條相交直線,
故DE⊥平面PCD.
(2)由(1)知,△CDE為等腰直角三角形,∠DCE=π4.如圖,過D作DF垂直CE于F,易知DF=FC=FE=1,又由已知得EB=1,故FB=2.
由∠ACB=π2得DF∥AC,DFAC=FBBC=23,故AC=32DF=32.
以C為坐標(biāo)原點(diǎn),分別以CA,CB,CP的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系,則C(0,0,0),P(0,0,3),A32,0,0,E(0,2,0),D(1,1,0),所以,ED=(1,-1,0),DP=(-1,-1,3),DA=12,-1,0.
設(shè)平面PAD的法向量為n1=(x1,y1,z1),
由n1DP=0,n1DA=0,得-x1-y1+3z1=0,12x1-y1=0,
故可取n1=(2,1,1).
由(1)可知DE⊥平面PCD,故平面PCD的法向量n2可取為ED,即n2=(1,-1,0).
從而法向量n1,n2的夾角的余弦值為
cos=n1n2|n1||n2|=36,
由圖可知所求二面角為銳角,
故所求二面角A-PD-C的余弦值為3
鏈接地址:http://www.hcyjhs8.com/p-6372857.html