購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。。【注】:dwg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢Q:1304139763
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計
摘要
變速器用來改變發(fā)動機(jī)傳到驅(qū)動輪上的轉(zhuǎn)矩和轉(zhuǎn)速,目的是在原地起步,爬坡,轉(zhuǎn)彎,加速等各種行駛工況下,使汽車獲得不同的牽引力和速度,同時使發(fā)動機(jī)在最有利工況范圍內(nèi)工作。變速器設(shè)有空擋和倒擋。需要時變速器還有動力輸出功能。
因?yàn)樽兯傧湓诘蜋n工作時作用有較大的力,所以一般變速箱的低檔都布置靠近軸的后支承處,然后按照從低檔到高檔順序布置各檔位齒輪。這樣做既能使軸有足夠大的剛性,又能保證裝配容易。變速箱整體結(jié)構(gòu)剛性與軸和殼體的結(jié)構(gòu)有關(guān)系。一般通過控制軸的長度即控制檔數(shù),來保證變速箱有足夠的剛性。
本文設(shè)計研究了三軸式五擋手動變速器,對變速器的工作原理做了闡述,變速器的各擋齒輪和軸做了詳細(xì)的設(shè)計計算,并進(jìn)行了強(qiáng)度校核,對一些標(biāo)準(zhǔn)件進(jìn)行了選型。變速器的傳動方案設(shè)計。簡單講述了變速器中各部件材料的選擇。
關(guān)鍵字:擋數(shù);傳動比;齒數(shù);軸
Abstract
Transmission to change the engine reached on the driving wheel torque and speed, is aimed at marking start, climbing, turning, accelerate various driving conditions, the car was different traction and speed Meanwhile engine in the most favorable working conditions within the scope of the work. And the trans mission in neutral gear with reverse gear. Transmission also need power output function.
Gearbox because of the low-grade work at a larger role, In general, the low-grade gearbox layout are close to the axis after support, Following from low-grade to high-grade order of the layout of stalls gear. This will not only allow axis are large enough for a rigid, but also ensures easy assembly. Gear box overall structure and rigid axle and the shell structure of relations. Generally through the control shaft length control over several stalls to ensure that adequate gear box rigid.
This paper describes the design of three-axis five block manual trans mission, the transmission principle of work elaborated, Transmission of the gear shaft and do a detailed design, and the intensity of a school. For some standard parts for the selection. Transmission Trans mission program design. A brief description of the trans mission of all components of the material choice.
Keywords : block; Transmission ratio; Teeth; Axis
3
目錄
第1章 緒 論………………………………………………………..1
第2章 總體方案設(shè)計………………………………………………..3
2.1 汽車參數(shù)的選擇………………………………………………...3
2.2 變速器設(shè)計應(yīng)滿足的基本要求…………………………………..3
第3章 變速器傳動機(jī)構(gòu)布置方案………………………………...….4
3.1 傳動機(jī)構(gòu)布置方案分析……………………………………….…4
3.1.1 固定軸式變速器………………………………………….…...4
3.1.2 倒擋布置方案………………………………………………...6
3.1.3 其他問題………………………………………………….….8
第4章 零部件結(jié)構(gòu)方案分析……………………………………..…..9
4.1 齒輪形式……………………………………………………….9
4.2 換擋機(jī)構(gòu)形式…………………………………………………..9
4.3 變速器軸承……………………………………………………11
第5章 變速器設(shè)計和計算………………………………………….13
5.1 擋數(shù)………………………………………………………......13
5.2 傳動比范圍……………………………………………………13
5.3 中心距A………………………………………………………14
5.4 外形尺寸……………………………………………………...14
5.5 軸的直徑……………………………………………………...14
5.6 齒輪參數(shù)……………………………………………………...15
5.6.1 模數(shù)的選取……………………………………………….…15
5.6.2 壓力角……………………………………………………16
5.6.3 螺旋角………………………………………………....…16
5.6.4 齒寬b………………………………………………………17
5.6.5 變位系數(shù)的選擇原則………………………………………...18
5.7 各擋齒輪齒數(shù)的分配…………………………………………..19
5.7.1 確定一擋齒輪的齒數(shù)………………………………………...20
5.7.2 對中心距進(jìn)行修正…………………………………………..20
5.7.3 確定常嚙合傳動齒輪副的齒數(shù)……………………………….21
5.7.4 確定其他各擋的齒數(shù)………………………………………...21
5.7.5 確定倒擋齒輪齒數(shù)……………………………………....…..22
第6章 變速器的校核………………………………………............23
6.1 齒輪的損壞形式……………………………………………….23
6.2 齒輪強(qiáng)度計算………………………………………………….23
6.2.1 齒輪彎曲強(qiáng)度計算…………………………………....…......24
6.2.2 輪齒接觸應(yīng)力計算…………………………………………..26
6.2.3 軸的強(qiáng)度計算……………………………………………….27
第7章 同步器的選型………………………………………………31
7.1 鎖銷式同步器…………………………………………………31
7.1.1 鎖銷式同步器結(jié)構(gòu)…………………………………………..31
7.1.2 鎖銷式同步器工作原理……………………………………...32
7.2 鎖環(huán)式同步器…………………………………………………33
7.2.1 鎖環(huán)式同步器結(jié)構(gòu).......................................33
7.2.2 鎖環(huán)式同步器工作原理……………………………………...34
7.2.3 鎖環(huán)式同步器主要尺寸的確定……………………………….34
第8章 變速器操縱機(jī)構(gòu)……………………………………………38
8.1 直接操縱手動換擋變速器……………………………………...38
8.2 遠(yuǎn)距離操縱手動換擋變速器……………………………………38
第9章 結(jié)論……………………………………………………….40
致謝……………………………………………………………….41
參考文獻(xiàn)…………………………………………………………..42
附錄A1譯文……………………………………………………….43
附錄A2譯文……………………………………………………….48
附錄B1外文文獻(xiàn)…………………………………………………...54
附錄B2外文文獻(xiàn)…………………………………………………...59
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計
第1章 緒 論
現(xiàn)代汽車的動力裝置,幾乎都采用往復(fù)活塞式內(nèi)燃機(jī)。它具有相當(dāng)多的優(yōu)點(diǎn),如體積小,質(zhì)量輕,工作可靠,使用方便等。但其性能與汽車的動力性和經(jīng)濟(jì)性之間存在著較大的矛盾。如在坡道上行駛時,所需的牽引力往往是發(fā)動機(jī)所能提供的牽引力的數(shù)倍。而且一般發(fā)動機(jī)如果直接與車輪相連,其輸出轉(zhuǎn)速換算到對應(yīng)的汽車車速上,將達(dá)到現(xiàn)代汽車極限速度的數(shù)倍。上述發(fā)動機(jī)牽引力、轉(zhuǎn)速與汽車牽引力、車速要求之間的矛盾,單靠現(xiàn)代汽車內(nèi)燃機(jī)本身是無法解決的。因此就出現(xiàn)了車用變速箱和主減速器。它們的共同努力使驅(qū)動輪的扭矩增大到發(fā)動機(jī)扭矩的若干倍,同時又可使其轉(zhuǎn)速減小到發(fā)動機(jī)轉(zhuǎn)速的幾分之一。
另外,現(xiàn)代汽車的使用條件極為復(fù)雜,在不同場合下有不同的要求。往往要受到如載運(yùn)量、道路坡度、路面好壞及交通是否通暢等條件的影響。這就要求汽車的牽引力和車速能在較大范圍內(nèi)變化,以適應(yīng)使用的要求。在條件良好的平直路面上要能以高速行駛,而在路面不平和有較大坡度時能提供較大的扭矩。變速箱的多擋位選擇就能滿足這些需求。此外,發(fā)動機(jī)在不同工況下,燃油的消耗量也是不一樣的。駕駛員可以根據(jù)具體情況,選擇變速箱的某一擋位,來減少燃油的消耗。在某些情況下,汽車還需要能倒向行駛。發(fā)動機(jī)本身是不可能倒轉(zhuǎn)的,只有靠變速箱的倒擋齒輪來實(shí)現(xiàn)。
變速箱是由變速傳動機(jī)構(gòu)和操縱機(jī)構(gòu)組成。根據(jù)前進(jìn)擋數(shù)的不同,變速箱有三、四、五和多擋幾種。根據(jù)軸的不同類型,分為固定軸式和旋轉(zhuǎn)軸式兩大類。而前者又分為兩軸式、中間軸式和多中間軸式變速箱。
現(xiàn)在汽車變速器的發(fā)展趨勢是向著可調(diào)自動變速箱或無級變速器方向發(fā)展。無級變速機(jī)構(gòu)由兩組錐形輪組成,包括一對主動錐形輪(錐形輪組1)和一對被動錐形輪(錐形輪組2) 同時有一根鏈條運(yùn)行在兩對錐形輪V形溝槽中間,鏈條的運(yùn)動如同動力傳遞單元。錐形輪組1由發(fā)動機(jī)的輔助減速機(jī)構(gòu)驅(qū)動,發(fā)動機(jī)的動力通過鏈條傳遞給錐形輪組2直至終端驅(qū)動。在每組錐形輪中有一個錐形輪可以在軸向移動,調(diào)整鏈條在錐形輪的工作直徑并傳遞速比。兩組錐形輪必須保持相同的調(diào)整,以保證鏈條始終處與漲緊狀態(tài),使傳遞扭矩時錐形輪接觸充分的壓力。采用無級變速器可以節(jié)約燃料,使汽車單位油耗的行駛里程提高30%。通過選擇最佳傳動比,獲得最有利的功率輸出,它的傳動比比傳統(tǒng)的變速器輕,結(jié)構(gòu)更簡單而緊湊。世界各大汽車制造商正競相開發(fā)無級變速器。專家預(yù)計2003至2005年間無級變速器將成為世界各大汽車制造商的技術(shù)開發(fā)重點(diǎn)。目前一些著名汽車制造商(如福特、通用、本田、克萊斯勒等)正致力于無級變速器的開發(fā)工作?,F(xiàn)在全球CVT的產(chǎn)量約為50萬臺,而普通型自動變速器的產(chǎn)量約為2,500萬臺,雙向通訊和線控技術(shù)的應(yīng)用,無級變速器有無比的優(yōu)勢,預(yù)計不久將來中國各大汽車制造商也將生產(chǎn)自己的CVT無級變速器,并廣泛應(yīng)用于國產(chǎn)轎車。
在此次設(shè)計中對變速器作了總體設(shè)計,對變速器的傳動方案進(jìn)行了選擇,變速器的齒輪和軸做了詳細(xì)的設(shè)計計算,對同步器和一些標(biāo)準(zhǔn)件做了選型設(shè)計。
第2章 總體方案設(shè)計
2.1 汽車參數(shù)的選擇
根據(jù)變速器設(shè)計所選擇的汽車基本參數(shù)如下表
表2-1設(shè)計基本參數(shù)表
Tablet 1-1 able basic design parameters
項(xiàng)目
參數(shù)值
發(fā)動機(jī):
2.5L V6
擋數(shù):
5
最大功率(kW/n):
1526
最大扭矩(N·m/n):
245/3500
2.2 變速器設(shè)計應(yīng)滿足的基本要求
對變速器如下基本要求.
1)保證汽車有必要的動力性和經(jīng)濟(jì)性。
2)設(shè)置空擋,用來切斷發(fā)動機(jī)動力向驅(qū)動輪的傳輸。
3)設(shè)置倒檔,使汽車能倒退行駛。
4)設(shè)置動力輸出裝置,需要時能進(jìn)行功率輸出。
5)換擋迅速,省力,方便。
6)工作可靠。汽車行駛過程中,變速器不得有跳擋,亂擋以及換擋沖擊等現(xiàn)象發(fā)生。
7)變速器應(yīng)當(dāng)有高的工作效率。
除此以外,變速器還應(yīng)當(dāng)滿足輪廓尺寸和質(zhì)量小,制造成本低,維修方便等要求。滿足汽車有必要的動力性和經(jīng)濟(jì)性指標(biāo),這與變速器的檔數(shù),傳動比范圍和各擋傳動比有關(guān)。汽車工作的道路條件越復(fù)雜,比功率越小,變速器的傳動比范圍越大。
第3章 變速器傳動機(jī)構(gòu)布置方案
機(jī)械式變速器因具有結(jié)構(gòu)簡單,傳動效率高,制造成本低和工作可靠等優(yōu)點(diǎn),在不同形式的汽車上得到 廣泛應(yīng)用。
3.1 傳動機(jī)構(gòu)布置方案分析
3.1.1 固定軸式變速器
固定軸式又分為兩軸式,中間軸式,雙中間軸式變速器。固定軸式應(yīng)用廣泛,其中兩軸式變速器多用于發(fā)動機(jī)前置前輪驅(qū)動的汽車上,中間軸式變速器多用于發(fā)動機(jī)前置后輪驅(qū)動的汽車上。與中間軸式變速器比較,兩軸式變速器有結(jié)構(gòu)簡單,輪廓尺寸小,布置方便,中間擋位傳動效率高和噪聲低等優(yōu)點(diǎn)。因兩軸式變速器不能設(shè)置直接擋,所以在高擋工作時齒輪和軸承均承載,不僅工作噪聲增大,且易損壞。此外,受結(jié)構(gòu)限制,兩軸式變速器的一擋速比不可能設(shè)計得很大。所以我選擇的是中間軸式的變速器。
圖2-1,分別示出了幾種中間軸式五擋變速器傳動方案。它們的共同特點(diǎn)是:變速器第一軸和第二軸的軸線在同一直線上,經(jīng)嚙合套將它們連接得到直接擋。使用直接擋,變速器的齒輪和軸承及中間軸均不承載,發(fā)動機(jī)轉(zhuǎn)矩經(jīng)變速器第一軸和第二軸直接輸出,此時變速器的傳動效率高,可達(dá)90%以上,噪聲低,齒輪和軸承的磨損減少。因?yàn)橹苯訐醯睦寐矢哂谄渌鼡跷?,因而提高了變速器的使用壽命;在其它前進(jìn)擋位工作時,變速器傳遞的動力需要經(jīng)過設(shè)置在第一軸,中間軸和第二軸上的兩對齒輪傳遞,因此在變速器中間軸與第二軸之間的距離(中心距)不大的條件下,一擋仍然有較大的傳動比;擋位高的齒輪采用常嚙合齒輪傳動,擋位低的齒輪(一擋)可以采用或不采用常嚙合齒輪傳動;多數(shù)傳動方案中除一擋以外的其他擋位的換擋機(jī)構(gòu),均采用同步器或嚙合套換擋,少數(shù)結(jié)構(gòu)的一擋也采用同步器或嚙合套換擋,還有各擋同步器或嚙合套多數(shù)情況下裝在第二軸上。再除直接擋以外的其他擋位工作時,中間軸式變速器的傳動效率略有降低,這是它的缺點(diǎn)。在擋數(shù)相同的條件下,各種中間軸式變速器主要在常嚙合齒輪對數(shù),換擋方式和到檔傳動方案上有差別。
圖2-1a所示方案,除一,倒擋用直齒滑動齒輪換擋外,其余各擋為常嚙合齒輪傳動。圖2-1b,c,d所示方案的各前進(jìn)擋,均用常嚙合齒輪傳動;圖2-1d所示方案中的倒擋和超速擋安裝在位于變速器后部的副箱體內(nèi),這樣布置除可以提高軸的剛度,減少齒輪磨損和降低工作噪聲外,還可以在不需要超速擋的條件下,很容易形成一個只有四個前進(jìn)擋的變速器。
圖3-1 中間軸式五擋變速器傳動方案
以上各種方案中,凡采用常嚙合齒輪傳動的擋位,其換擋方式可以用同步器或嚙合套來實(shí)現(xiàn)。同一變速器中,有的擋位用同步器換擋,有的擋位用嚙合套換擋,那么一定是擋位高的用同步器換擋,擋位低的用嚙合套換擋。
發(fā)動機(jī)前置后輪驅(qū)動的轎車采用中間軸式變速器,為縮短傳動軸長度,可將變速器后端加長。伸長后的第二軸有時裝在三個支承上,其最后一個支承位于加長的附加殼體上。如果在附加殼體內(nèi),布置倒擋傳動齒輪和換擋機(jī)構(gòu),還能減少變速器主體部分的外形尺寸。
綜上所述選擇第2種傳動方案,前進(jìn)擋,均用常嚙合齒輪傳動。
3.1.2 倒擋布置方案
與前進(jìn)擋位比較,倒擋使用率不高,而且都是在停車狀態(tài)下實(shí)現(xiàn)換倒擋,故多數(shù)方案采用直齒滑動齒輪方式換倒擋。為實(shí)現(xiàn)倒擋傳動,有些方案利用在中間軸和第二軸上的齒輪傳動路線中,加入一個中間傳動齒輪的方案。前者雖然結(jié)構(gòu)簡單,但是中間傳動齒輪的輪齒,是在最不利的正,負(fù)交替對稱變化的彎曲應(yīng)力狀態(tài)下工作,而后者是在較為有利的單向循環(huán)彎曲應(yīng)力狀態(tài)下工作,并使倒擋傳動比略有增加。
圖3-2 倒擋布置方案
Figure 2 -2 reverse gear layout program
圖2-2為常見的倒擋布置方案。圖2-2b所示方案的優(yōu)點(diǎn)是換倒擋時利用了中間軸上的一擋齒輪,因而縮短了中間軸的長度。但換擋時有兩對齒輪同時進(jìn)入嚙合,使換擋困難。圖2-2c所示方案能獲得較大的倒擋傳動比,缺點(diǎn)是換擋程序不合理。圖2-2d所示方案針對前者的缺點(diǎn)做了修改,因而取代了圖2-2c所示方案。圖2-2e所示方案是將中間軸上的一,倒擋齒輪做成一體,將其齒寬加長。圖2-2f所示方案適用于全部齒輪副均為常嚙合齒輪,換擋更為輕便。為了充分利用空間,縮短變速器軸向長度,有的貨車倒擋傳動采用圖2-2g所示方案。其缺點(diǎn)是一,倒擋須各用一根變速器撥叉軸,致使變速器上蓋中的操縱機(jī)構(gòu)復(fù)雜一些。
綜上所述選擇第四種倒擋布置方案。
圖3-3 倒擋軸位置與受力分析
Figure 2 -3 reverse gear axles and Analysis
因?yàn)樽兯倨髟谝粨鹾偷箵豕ぷ鲿r有較大的力,所以無論是兩軸式變速器還是中間軸式變速器的低檔與倒擋,都應(yīng)當(dāng)布置在在靠近軸的支承處,以減少軸的變形,保證齒輪重合度下降不多,然后按照從低擋到高擋順序布置各擋齒輪,這樣做既能使軸有足夠大的剛性,又能保證容易裝配。倒擋的傳動比雖然與一擋的傳動比接近,但因?yàn)槭褂玫箵醯臅r間非常短,從這點(diǎn)出發(fā)有些方案將一擋布置在靠近軸的支承處,然后再布置倒擋。此時在倒擋工作時,齒輪磨損與噪聲在短時間內(nèi)略有增加,與此同時在一擋工作時齒輪的磨損與噪聲有所減少。
除此以外,倒擋的中間齒輪位于變速器的左側(cè)或右側(cè)對倒擋軸的受力狀況有影響,見圖3-3所示。
3.1.3 其他問題
經(jīng)常使用的擋位,其齒輪因接觸應(yīng)力過高而造成表面電蝕損壞。將高擋布置在靠近軸的支承中部區(qū)域較為合理,在該區(qū)因軸的變形而引起的齒輪偏轉(zhuǎn)角較小,齒輪保持較好的嚙合狀態(tài),偏載減少能提高齒輪壽命。
某些汽車變速器有僅在好路或空車行駛時才使用的超速擋。使用傳動比小于1(為0.7~0.8)的超速擋,能夠充分地利用發(fā)動機(jī)功率,使汽車行駛1KM所需發(fā)動機(jī)曲軸的總轉(zhuǎn)速降低,因而有助于減少發(fā)動機(jī)磨損和降低燃料消耗。但是與直接擋比較,使用超速擋會使傳動效率降低,噪聲增大。
機(jī)械式變速器的傳動效率與所選用的傳動方案有關(guān),包括傳遞動力時處于工作狀態(tài)的齒輪對數(shù),每分鐘轉(zhuǎn)速,傳遞的功率,潤滑系統(tǒng)的有效性,齒輪和殼體等零件的制造精度等。
第4章 零部件結(jié)構(gòu)方案分析
4.1 齒輪形式
與直齒圓柱齒輪比較,斜齒圓柱齒輪有使用壽命長,工作時噪聲低等優(yōu)點(diǎn);缺點(diǎn)是制造時稍復(fù)雜,工作時有軸向力。變速器中的常嚙合齒輪均采用斜齒圓柱齒輪,盡管這樣會使常嚙合齒輪數(shù)增加,并導(dǎo)致變速器的轉(zhuǎn)動慣量增大。直齒圓柱齒輪僅用于低檔和倒擋。
我的設(shè)計中一擋和倒擋用的是直齒輪,其他擋都是斜齒輪。
4.2 換擋機(jī)構(gòu)形式
變速器換擋機(jī)構(gòu)有直齒滑動齒輪,嚙合套和同步器換擋三種形式。汽車行駛時各擋齒輪有不同的角速度,因此用軸向滑動直齒齒輪的方式換擋,會在輪齒端面產(chǎn)生沖擊,并伴隨有噪聲。這使齒輪端部磨損加劇并過早損壞,同時使駕駛員精神緊張,而換擋產(chǎn)生的噪聲又使乘坐舒適性降低。只有駕駛員用熟練的操作技術(shù)(如兩腳離合器),時齒輪換擋時無沖擊,才能克服上述缺點(diǎn)。但是該瞬間駕駛員注意力被分散,會影響行駛安全性。因此,盡管這種換擋方式結(jié)構(gòu)簡單,但除一擋,倒擋外已很少使用。
由于變速器第二軸齒輪與中間軸齒輪處于常嚙合狀態(tài),所以可用移動嚙合套換擋。這時,因同時承受換擋沖擊載荷的接合齒齒數(shù)多。而輪齒又不參與換擋,它們都不會過早損壞,但不能消除換擋沖擊,所以仍要求駕駛員有熟練的操作技術(shù)。此外,因增設(shè)了嚙合套和常嚙合齒輪,使變速器旋轉(zhuǎn)部分的總慣性矩增大。
因此,目前這種換擋方法只在某些要求不高的擋位及重型貨車變速器上應(yīng)用。這是因?yàn)橹匦拓涇嚀跷婚g的公比較小,則換擋機(jī)構(gòu)連件之間的角速度差也小,因此采用嚙合套換擋,并且還能降低制造成本及減小變速器長度。
使用同步器能保證迅速、無沖擊、無噪聲換擋,而與操作技術(shù)的熟練程度無關(guān),從而提高了汽車的加速性、燃油經(jīng)濟(jì)性和行駛安全性。同上述兩種換擋方法比較,雖然它有機(jī)構(gòu)復(fù)雜、制造精度要求高、軸向尺寸大等缺點(diǎn),但仍然得到廣泛應(yīng)用。
使用同步器或嚙合套換擋,其換擋行程要比滑動齒輪換擋行程小。在滑動齒輪特別寬的情況下,這種差別就更為明顯。為了操縱方便,換入不同擋位的變速桿行程要求盡可能一樣。
自動脫擋是變速器的主要故障之一。為解決這個問題,除工藝上采取措施外,目前在結(jié)構(gòu)上采取措施比較有效的方案有以下幾種:
圖4-1防止自動脫擋的機(jī)構(gòu)措施Ⅰ
圖4-2防止自動脫擋的機(jī)構(gòu)措施Ⅱ
圖4-3防止自動脫擋的機(jī)構(gòu)措施Ⅲ
1)將兩接合齒的嚙合位置錯開,見圖4-1。這樣在嚙合時,使接合齒端部超過被接合齒約1~3mm。使用中接觸部分?jǐn)D壓和磨損,因而在接合齒端部形成凸肩,用來阻止接合齒自動脫擋。
2)將嚙合套齒座上前齒圈的齒厚切?。ㄇ邢?.3~0.6mm),這樣,換擋后嚙合套的后端面被后齒圈的前端面頂住,從而減少自動脫擋,見圖4-2。
3)將接合齒的工作面加工成斜面,形成倒錐角(一般傾斜2°~3°),使接合齒面產(chǎn)生阻止自動脫擋的軸向力,見圖4-3。這種方案比較有效,應(yīng)用較多。
4.3 變速器軸承
變速器軸承常采用圓柱滾子軸承,球軸承,滾針軸承,圓錐滾子軸承,滑動軸套等。至于何處應(yīng)當(dāng)采用何種軸承,是受結(jié)構(gòu)限制并隨所承受的載荷特點(diǎn)不同而不同。
汽車變速器結(jié)構(gòu)緊湊,尺寸小,采用尺寸大些的軸承結(jié)構(gòu)受限制,常在布置上有困難。如變速器的第二軸前端支承在第一軸常嚙合齒輪的內(nèi)腔中,內(nèi)腔尺寸足夠時可布置圓柱滾子軸承,若空間不足則采用滾針軸承。變速器第一軸前端支承在飛輪的內(nèi)腔里,因有足夠大的空間長采用球軸承來承受向力。作用在第一軸常嚙合齒輪上的軸向力,經(jīng)第一軸后部軸承傳給變速器殼體,此處常用軸承外圈有擋圈的球軸承。第二軸后端常采用球軸承,以軸向力和徑向力。中間軸上齒輪工作時產(chǎn)生的軸向力,原則上由前或后軸承來承受都可以,但當(dāng)在殼體前端面布置軸承蓋有困難的時候,必須由后端軸承承受軸向力,前端采用圓柱滾子軸承來承受徑向力。
變速器中采用圓錐滾子軸承雖然有直徑小,寬度較寬因而容量大,可承受高負(fù)荷等優(yōu)點(diǎn),但也有需要調(diào)整預(yù)緊,裝配麻煩,磨損后軸易歪斜而影響齒輪正確嚙合的缺點(diǎn)。
變速器第一軸,第二軸的后部軸承以及中間軸前,后軸承,按直徑系列一般選用中系列球軸承或圓柱滾子軸承。軸承的直徑根據(jù)變速器中心距確定,并要保證殼體后壁兩軸承孔之間的距離不小于6~20mm,下限適用于輕型車和轎車。
滾針軸承,滑動軸套主要用在齒輪與軸不是固定連接,并要求兩者有相對運(yùn)動的地方。滾針軸承有滾動摩擦損失小,傳動效率高,徑向配合間隙小,定位及運(yùn)轉(zhuǎn)精度高,有利于齒輪嚙合等優(yōu)點(diǎn)?;瑒虞S套的徑向配合間隙大,易磨損,間隙增大后影響齒輪的定位和運(yùn)轉(zhuǎn)精度并使工作噪聲增加?;瑒虞S套的優(yōu)點(diǎn)是制造容易,成本低。
在本次設(shè)計中主要選用了圓錐滾子軸承、圓柱滾子軸承和滾針軸承。
第5章 變速器設(shè)計和計算
5.1 擋數(shù)
增加變速器的擋數(shù)能改善汽車的動力性和經(jīng)濟(jì)性。擋數(shù)越多,變速器的結(jié)構(gòu)越復(fù)雜,并且是尺寸輪廓和質(zhì)量加大。同時操縱機(jī)構(gòu)復(fù)雜,而且在使用時換擋頻率也增高。
在最低擋傳動比不變的條件下,增加變速器的當(dāng)屬會是變速器相鄰的低擋與高擋之間傳動比比值減小,是換擋工作容易進(jìn)行。要求相鄰擋位之間的傳動比比值在1.8以下,該制約小換擋工作越容易進(jìn)行。要求高擋區(qū)相鄰擋位之間的傳動比比值要比低擋區(qū)相鄰擋位之間的傳動比比值小。
近年來為了降低油耗,變速器的擋數(shù)有增加的趨勢。目前轎車一般用4~~5個擋位,級別高的轎車變速器多用5個擋,貨車變速器采用4~~5個擋位或多擋。裝載質(zhì)量在2~3.5T的貨車采用5擋變速器,裝載質(zhì)量在4~8T的貨車采用6擋變速器。多擋變速器多用于重型貨車和越野車。
選用的是5擋變速器。
5.2 傳動比范圍
變速器的傳動比范圍是指變速器最低擋傳動比與最高擋轉(zhuǎn)動比的比值。傳動比范圍的確定與選定的發(fā)動機(jī)參數(shù),汽車的最高車速和使用條件等因素有關(guān)。
目前轎車的傳動比范圍在3~4之間,輕型貨車在5~6之間,其他貨車則更大。
轎車的傳動比范圍為3.6:1
5.3 中心距A
對中間軸式變速器,是將中間軸與第二軸之間的距離成為變速器中心距。其大小不僅對變速器的外形尺寸,體積和質(zhì)量大小,而且對輪齒的接觸強(qiáng)度有影響。中心距越小,齒輪的接觸應(yīng)力大,齒輪壽命短。最小允許中心距當(dāng)有保證齒輪有必要的接觸強(qiáng)度來確定。變速器軸經(jīng)軸承安裝在殼體上,從布置軸承的可能與方便和不影響殼體的強(qiáng)度考慮,要求中心距取大些。此外受一擋小齒輪齒數(shù)不能過少的限制,要求中心距也要大些。
A= (5-1)
==85mm
式中,A為中心距(mm);為中心距系數(shù),轎車:=8.9~9.3; 為發(fā)動機(jī)最大轉(zhuǎn)矩();為變速器一擋傳動比;為變速器傳動效率0.96。
轎車變速器的中心距在65~80mm變化范圍。原則上總質(zhì)量小的汽車中心距小。
5.4 外形尺寸
變速器的橫向外形尺寸,可根據(jù)齒輪直徑以及倒擋中間齒輪和換擋機(jī)構(gòu)的布置初步確定。
轎車四擋變速器殼體的軸向尺寸(3.0~3.4)A。
當(dāng)變速器選用常嚙合齒輪對數(shù)和同步器多時,中心距系數(shù)K應(yīng)取給出系數(shù)的上限。為檢測方便,A取整。
設(shè)計的是五擋變速器,初定軸向殼體尺寸為300mm。
5.5 軸的直徑
變速器工作時軸除傳遞轉(zhuǎn)矩外,還承受來自齒輪作用的徑向力,如果是斜齒輪還有軸向力。在這些力的作用下,變速器的軸必須有足夠的剛度和強(qiáng)度。軸的剛度不足會產(chǎn)生彎曲變形,破壞齒輪的正確嚙合,對齒輪的強(qiáng)度和耐磨性產(chǎn)生影響,增加工作噪聲。
中間軸式變速器的第二軸和中間軸中部直徑D=0.45A,軸的最大直徑D和支撐間距離L的比值,對中間軸,D/L=0.16~0.18;對第二軸,D/L=0.18~0.21。
第一軸花健部分直徑D(mm)可按下式初選
d=K (5-2)
=4.2=26mm
式中K為經(jīng)驗(yàn)系數(shù),K=4.0~4.6,為發(fā)動機(jī)最大轉(zhuǎn)矩()
第二軸和中間軸中部直徑 D=0.45A=0.4585=36mm
5.6 齒輪參數(shù)
5.6.1 模數(shù)的選取
遵循的一般原則:為了減少噪聲應(yīng)合理減少模數(shù),增加尺寬;為使質(zhì)量小,增加數(shù),同時減少尺寬;從工藝方面考慮,各擋齒輪應(yīng)選用同一種模數(shù),而從強(qiáng)度方面考慮,各擋齒數(shù)應(yīng)有不同的模數(shù)。減少轎車齒輪工作噪聲有較為重要的意義,因此齒輪的模數(shù)應(yīng)選??;對貨車,減小質(zhì)量比噪聲更重要,故齒輪應(yīng)選大些的模數(shù)。
低擋齒輪應(yīng)選大些的模數(shù),其他擋位選另一種模數(shù)。少數(shù)情況下汽車變速器各擋齒輪均選用相同的模數(shù)。
嚙合套和同步器的接合齒多數(shù)采用漸開線齒輪。由于工藝上的原應(yīng),同一變速器的接合齒模數(shù)相同。其取用范圍是:乘用車和總質(zhì)量在1.8~14.0t的貨車為2.0~3.5mm。選取較小的模數(shù)值可使齒數(shù)增多,有利換擋。
初選齒輪模數(shù) =3.0mm
齒輪法向模數(shù) =3.0mm
5.6.2 壓力角
壓力角較小時,重合度大,傳動平穩(wěn),噪聲低;較大時可提高輪齒的抗彎強(qiáng)度和表面接觸強(qiáng)度。對轎車,為加大重合度已降低噪聲,取小些。
變速器齒輪壓力角為 20
嚙合套或同步器的接合齒壓力角用30°。
5.6.3 螺旋角
斜齒輪在變速器中得到廣泛的應(yīng)用。選斜齒輪的螺旋角,要注意他對齒輪工作噪聲齒輪的強(qiáng)度和軸向力的影響。在齒輪選用大些的螺旋角時,使齒輪嚙合的重合度增加,因而工作平穩(wěn)、噪聲降低。試驗(yàn)還證明:隨著螺旋角的增大,齒的強(qiáng)度也相應(yīng)提高。不過當(dāng)螺旋角大于30時,其抗彎強(qiáng)度驟然下降,而接觸強(qiáng)度仍然繼續(xù)上升。因此,從提高低擋齒輪的抗彎強(qiáng)度出發(fā),并不希望用過大的螺旋角,以15~25為宜;而從提高高擋齒輪的接觸強(qiáng)度和增加重合度著眼,應(yīng)選用較大螺旋角。
斜齒輪傳遞轉(zhuǎn)矩時,要產(chǎn)生軸向力并作用到軸承上。設(shè)計時應(yīng)力求中間軸上同時工作的兩對齒輪產(chǎn)生軸向力平衡,以減少軸承負(fù)荷,提高軸承壽命。因此,中間軸上的不同擋位齒輪的螺旋角應(yīng)該是不一樣的。為使工藝簡便,在中間軸軸向力不大時,可將螺旋角設(shè)計成一樣的,或者僅取為兩種螺旋角。中間軸上全部齒輪的螺旋方向應(yīng)一律取為右旋,則第一、第二軸上的斜齒輪應(yīng)取為左旋。軸向力經(jīng)軸承蓋作用到殼體上。一擋和倒擋設(shè)計為直齒時,在這些擋位上工作,中間軸上的軸向力不能抵消(但因?yàn)檫@些擋位使用得少,所以也是允許的),而此時第二軸則沒有軸向力作用。
根據(jù)圖5-1可知,欲使中間軸上兩個斜齒輪的軸向力平衡,需滿足下述條件
(5-3)
(5-4)
由于T=,為使兩軸向力平衡,必須滿足
(5-5)
式中,F(xiàn)a1,F(xiàn)a2為作用在中間軸齒輪1、2上的軸向力,F(xiàn)n1,F(xiàn)n2為作用在中間軸齒輪1、2上的圓周力;r1,r2為齒輪1、2的節(jié)圓半徑;T為中間軸傳遞的轉(zhuǎn)矩。
最后可用調(diào)整螺旋角的方法,使各對嚙合齒輪因模數(shù)或齒數(shù)和不同等原因而造成的中心距不等現(xiàn)象得以消除。
圖5-1 中間軸軸向力的平衡
Figure 4 -1 intermediate shaft axial force balance
斜齒輪螺旋角可在下面提供的范圍內(nèi)選用:
轎車中間軸式變速器為 22~34°
初選的螺旋角=28
5.6.4 齒寬b
應(yīng)注意齒寬對變速器的軸向尺寸,齒輪工作平穩(wěn)性,齒輪強(qiáng)度和齒輪工作時受力的均勻程度均有影響。
考慮到盡可能的減少質(zhì)量和縮短變速器的軸向尺寸,應(yīng)該選用較小的齒寬。減少齒寬會使斜齒輪傳動平穩(wěn)的優(yōu)點(diǎn)被削弱,還會使工作應(yīng)力增加。使用寬些的齒寬,工作時會因軸的變形導(dǎo)致齒輪傾斜,使齒輪沿齒寬方向受力不均勻并在齒寬方向磨損不均勻。
通常根據(jù)齒輪模數(shù)m的大小來選定齒寬。
直齒:b=m, 為齒寬系數(shù),取為4.5~8.0 取=5
斜齒:b=,取6.0~8.5 ,取=7
第一軸常嚙合齒輪副的齒寬系數(shù),可取大些,使接觸線長度增加、接觸應(yīng)力降低,以提高傳動平穩(wěn)性和齒輪壽命。
直齒 b==53=15mm
斜齒 b==73=21mm
5.6.5 變位系數(shù)的選擇原則
齒輪的變位是齒輪設(shè)計中一個非常重要的環(huán)節(jié)。采用變位齒輪,除為了避免齒輪產(chǎn)生根切和配湊中心距以外,它還影響齒輪的強(qiáng)度,使用平穩(wěn)性,耐磨性、抗膠合能力及齒輪的嚙合噪聲。
變位齒輪主要有兩類:高度變位和角度變位。高度變位齒輪副的一對嚙合齒輪的變位系數(shù)的和為零。高度變位可增加小齒輪的齒根強(qiáng)度,使它達(dá)到和大齒輪強(qiáng)度想接近的程度。高度變位齒輪副的缺點(diǎn)是不能同時增加一對齒輪的強(qiáng)度,也很難降低噪聲。角度變位齒輪副的變位系數(shù)之和不等于零。角度變位既具有高度變位的優(yōu)點(diǎn),有避免了其缺點(diǎn)。
有幾對齒輪安裝在中間軸和第二軸上組合并構(gòu)成的變速器,會因保證各檔傳動比的需要,使各相互嚙合齒輪副的齒數(shù)和不同。為保證各對齒輪有相同的中心距,此時應(yīng)對齒輪進(jìn)行變位。當(dāng)齒數(shù)和多的齒輪副采用標(biāo)準(zhǔn)齒輪傳動或高度變位時,則對齒數(shù)和少些的齒輪副應(yīng)采用正角度變位。由于角度變位可獲得良好的嚙合性能及傳動質(zhì)量指標(biāo),故采用的較多。對斜齒輪傳動,還可通過選擇合適的螺旋角來達(dá)到中心距相同的要求。
變速器齒輪是在承受循環(huán)負(fù)荷的條件下工作,有時還承受沖擊負(fù)荷。對于高檔齒輪,其主要損壞形勢是齒面疲勞剝落,因此應(yīng)按保證最大接觸強(qiáng)度和抗膠合劑耐磨損最有利的原則選擇變位系數(shù)。為提高接觸強(qiáng)度,應(yīng)使總變位系數(shù)盡可能取大一些,這樣兩齒輪的齒輪漸開線離基圓較遠(yuǎn),以增大齒廓曲率半徑,減小接觸應(yīng)力。對于低擋齒輪,由于小齒輪的齒根強(qiáng)度較低,加之傳遞載荷較大,小齒輪可能出現(xiàn)齒根彎曲斷裂的現(xiàn)象。
總變位系數(shù)越小,一對齒輪齒更總厚度越薄,齒根越弱,抗彎強(qiáng)度越低。但是由于輪齒的剛度較小,易于吸收沖擊振動,故噪聲要小些。
更據(jù)上述理由,為降低噪聲,對于變速器中除去一,二擋和倒擋以外的其他各擋齒輪的總變位系數(shù)要選用較小的一些數(shù)值,以便獲得低噪聲傳動。
5.7 各擋齒輪齒數(shù)的分配
在初選中心距,齒輪模數(shù)和螺旋角以后,可更據(jù)變速器的擋數(shù),傳動比和傳動方案來分配各擋齒輪的齒數(shù)。
圖5-2 五擋變速器傳動方案
5.7.1 確定一擋齒輪的齒數(shù)
一擋傳動比
(5-6)
如果,齒數(shù)確定了,則與的傳動比可求出,為了求,的齒數(shù),先求其齒數(shù)和
直齒=2A/m (5-7)
斜齒=2A/ (5-8)
因?yàn)橐粨跤玫氖侵饼X輪,所以=2A/m=285/3=57
計算后取整,然后進(jìn)行大小齒輪齒數(shù)的分配。中間軸上的一檔小齒輪的齒數(shù)盡可能取小些,以便使/的傳動比大些,在已定的情況下,/的傳動比可分配小些,使第一軸常嚙合齒輪的齒數(shù)多些,以便在其內(nèi)腔設(shè)置第二軸的前軸承并保證輪軸有足夠的厚度??紤]到殼體上的第一軸軸孔尺寸的限制和裝配的可能性,該齒輪齒數(shù)又不宜取多。
中間軸上小齒輪的最少齒數(shù),還受中間軸軸經(jīng)尺寸的限制,即受剛度的限制。在選定時,對軸的尺寸及齒輪齒數(shù)都要統(tǒng)一考慮。轎車中間軸式變速器一擋傳動比=3.5~3.8時,中間軸上一擋齒輪數(shù)可在15~17間取,貨車在2~17間取。
因?yàn)?3.6取中間軸上一擋齒輪=15
輸出軸上一擋齒輪=-=57-15=42
5.7.2 對中心距進(jìn)行修正
因?yàn)橛嬎泯X數(shù)和后,經(jīng)過取整數(shù)使中心距有了變化,所以應(yīng)根據(jù)和齒輪變位系數(shù)新計算中心距,在以修正后的中心距作為各擋齒輪齒數(shù)分配的依據(jù)。
故修正后中心距A取85mm
5.7.3 確定常嚙合傳動齒輪副的齒數(shù)
求出傳動比 (5-9)
而常嚙合傳動齒輪中心距和一檔齒輪的中心距相等,即
A=/2 (5-10)
85=3(+)/2cos28
求得五擋齒輪齒數(shù)為 =22 =28
各擋傳動比分別為 2.6
=1.9
1.4
1
5.7.4 確定其他各擋的齒數(shù)
二擋齒輪是斜齒輪
求得二擋齒輪齒數(shù)為
三擋齒輪齒數(shù)
求得
四擋齒輪齒數(shù)
求得
5.7.5 確定倒擋齒輪齒數(shù)
取中間軸上的倒擋齒輪和中間軸上一擋齒輪齒數(shù)相同,即==15
有中心距 求得 =40
倒擋齒輪選用的模數(shù)往往與一檔相同,倒擋齒輪的齒數(shù),一般在21-22之間,初選后,可計算出中間軸與倒擋軸的中心距
取=21 ===54mm
為保證倒擋齒輪的嚙合和不產(chǎn)生運(yùn)動干涉,齒輪14和12的齒頂圓之間應(yīng)保持有0.5mm以上的間隙,則齒輪14的齒頂圓直徑應(yīng)為
=2=56mm
所以 求出 =16
第6章 變速器的校核
6.1 齒輪的損壞形式
齒輪的損壞形式分三種:輪齒折斷,齒面疲勞剝落,移動換擋齒輪端部破壞。
輪齒折斷分兩種:輪齒受足夠大的沖擊載荷作用,造成輪齒彎曲折斷;輪齒再重復(fù)載荷作用下齒根產(chǎn)生疲勞裂紋,裂紋擴(kuò)展深度逐漸加大,然后出現(xiàn)彎曲折斷。前者在變速器中出現(xiàn)的很少,后者出現(xiàn)的多。
齒輪工作時,一對相互嚙合,齒面相互擠壓,這時存在齒面細(xì)小裂縫中的潤滑油油壓升高,并導(dǎo)致裂縫擴(kuò)展,然后齒面表層出現(xiàn)塊狀脫落形成齒面點(diǎn)蝕。他使齒形誤差加大,產(chǎn)生動載荷,導(dǎo)致輪齒折斷。
用移動齒輪的方法完成換擋的抵擋和倒擋齒輪,由于換擋時兩個進(jìn)入嚙合的齒輪存在角速度差,換擋瞬間在齒輪端部產(chǎn)生沖擊載荷,并造成損壞。
6.2 齒輪強(qiáng)度計算
與其他機(jī)械行業(yè)相比,不同用途汽車的變速器齒輪使用條間仍是相似的。此外,汽車變速器齒輪用的材料,熱處理方法,加工方法,精度級別,支承方式也基本一致。如汽車變速器齒輪用低碳合金鋼制作,采用剃齒和磨齒精加工 ,齒輪表面采用滲碳淬火熱處理工藝,齒輪精度為JB179—83,6級 和7級。因此,用于計算通用齒輪強(qiáng)度公式更為簡化一些的計算公式來計算汽車齒輪,同樣可以獲得較為準(zhǔn)確的結(jié)果。下面介紹的是計算汽車變速器齒輪強(qiáng)度用的簡化計算公式。
6.2.1 齒輪彎曲強(qiáng)度計算
1) 直齒輪彎曲應(yīng)力
(6-1)
式中,為彎曲應(yīng)力;為圓周力,;為計算載荷;d為節(jié)圓直徑;為應(yīng)力集中系數(shù),可近似取=1.65;為摩擦力影響系數(shù),主、從動齒輪在嚙合點(diǎn)上的摩擦力方向不同,對彎曲應(yīng)力的影響也不同:主動齒輪=1.1,從動齒輪=0.9;b為齒寬;t為端面齒距,,m為模數(shù);y為齒形系數(shù),如圖5-1所示。
因?yàn)辇X輪節(jié)圓直徑d=,z為齒數(shù),帶入式(6-1)得
(6-2)
一擋從動齒輪
一擋主動齒輪
一、倒擋直齒輪作用彎曲應(yīng)力在400~850N/mm
故直齒輪彎曲應(yīng)力均符合要求
2) 斜齒輪彎曲應(yīng)力
(6-3)
式中,為圓周力,;為計算載荷;d為節(jié)圓直徑, ,為法向模數(shù);z為齒數(shù);為斜齒輪螺旋角;為應(yīng)力集中系數(shù),=1.50;b為齒面寬;t為法向齒距,;y為齒形系數(shù),可按當(dāng)量齒數(shù)在圖5-1中查得;為重合度影響系數(shù),=2.0。
將上述有關(guān)參數(shù)代入式(6-3),整理后得斜齒輪彎曲應(yīng)力為
(6-4)
五擋齒輪彎曲應(yīng)力
當(dāng)計算載荷取作用到變速器第一軸上的最大轉(zhuǎn)矩時,對乘用車常嚙合齒輪和高擋齒輪,許用應(yīng)力在180~350范圍。 符合要求。
圖6-1 齒形系數(shù)圖
(假定載荷作用在齒頂,)
6.2.2 輪齒接觸應(yīng)力計算
輪齒接觸應(yīng)力
δ=0.418 (6-5)
式中,為輪齒的接觸應(yīng)力;F為齒面上的法向力, ;為圓周力,;為計算載荷;d為節(jié)圓直徑;為節(jié)點(diǎn)處壓力角,為齒輪螺旋角;E為齒輪材料的彈性模量;b為齒輪接觸的實(shí)際寬度; 、為主、從動齒輪節(jié)點(diǎn)處的曲率半徑,直齒輪 、,斜齒輪 , ; 、為主、從動齒輪節(jié)圓半徑。
一擋齒輪接觸應(yīng)力
δ=0.418
=1955.3
五擋齒輪接觸應(yīng)力
δ=0.418
=1341.8
校核都在范圍之內(nèi),符合要求
將作用在變速器第一軸上的載荷作為計算載荷時,變速器齒輪的許用接觸應(yīng)力見表6-1。
表6-1 變速器齒輪許用接觸應(yīng)力
齒 輪
/
滲碳齒輪
液體碳氮共滲齒輪
一擋和倒擋
1900--2000
950--1000
常嚙合齒輪和高擋
1300--1400
650--700
變速器齒輪多數(shù)采用滲碳合金鋼,其表層的高硬度與芯部的高韌性相結(jié)合,能大大提高齒輪的耐磨性及抗彎取疲勞和接觸疲勞的能力。在選用鋼材及熱處理時,對切削加工性能及成本也應(yīng)考慮。值得指出的是,對齒輪進(jìn)行強(qiáng)力噴丸處理以后,齒輪彎曲疲勞壽命和接觸疲勞壽命都能提高。齒輪在熱處理之后進(jìn)行磨齒,能消除齒輪熱處理的變形;磨齒齒輪精度高于熱處理前剃齒和擠齒齒輪精度,使得傳動平穩(wěn)、效率提高;在同樣負(fù)荷的條件下,磨齒的彎曲疲勞壽命比剃齒的要高。
國內(nèi)汽車變速器齒輪材料主要用20CrMnTi、20Mn2TiB、16MnCr5、20MnCr5、25MnCr5。滲碳齒輪表面硬度為58~63HRC,芯部硬度為33~48HRC。
6.2.3 軸的強(qiáng)度計算
變速器工作時,由于齒輪上有圓周力、徑向力和軸向力作用,其軸要承受轉(zhuǎn)矩和彎矩。變速器的軸應(yīng)有足夠的剛度和強(qiáng)度。因?yàn)閯偠炔蛔愕妮S會產(chǎn)生彎曲變形,破壞了齒輪的正確嚙合,對齒輪的強(qiáng)度、耐磨性和工作噪聲等均有不利影響。所以設(shè)計變速器軸時,其剛度大小應(yīng)以保證齒輪能實(shí)現(xiàn)正確的嚙合為前提條件。
對齒輪工作影響最大的是軸在垂直面內(nèi)產(chǎn)生的撓度和軸在水平面內(nèi)的轉(zhuǎn)角。前者使齒輪中心距發(fā)生變化,破壞了齒輪的正確嚙合;后者使齒輪相互歪斜,如圖6-2所示,致使沿齒長方向的壓力分布不均勻。
圖6-2 變速器軸的變形簡圖
a) 軸在垂直面內(nèi)的變形 b)軸在水平面內(nèi)的變形
初步確定軸的尺寸以后,可對軸進(jìn)行剛度和強(qiáng)度驗(yàn)算。欲求中間軸式變速器第一軸的支點(diǎn)反作用力,必須先求第二軸的支點(diǎn)反力。擋位不同,不僅圓周力、徑向力和軸向力不同,而且力到支點(diǎn)的距離也有變化,所以應(yīng)當(dāng)對每個擋位都進(jìn)行驗(yàn)算。驗(yàn)算時將軸看做鉸接支承的梁。作用在第一軸上的轉(zhuǎn)矩應(yīng)取。
軸的撓度和轉(zhuǎn)角可按《材料力學(xué)》有關(guān)公式計算。計算時僅計算齒輪所在位置處軸的撓度和轉(zhuǎn)角。第一軸常嚙合齒輪副,因距離支承點(diǎn)近、負(fù)荷又小,通常撓度不大,故可以不必計算。變速器齒輪在軸上的位置如圖5-3所示時,可分別用下式計算
圖6-3 變速器軸的撓度和轉(zhuǎn)角
(6-6)
=0.08mm
(6-7)
=0.13mm
(6-8)
=0.0008rad
式中,為齒輪齒寬中間平面上的圓周力;為齒輪齒寬中間平面上的徑向力;E為彈性模量,E=2.1X;I為慣性矩,對于實(shí)心軸:I=π/64;d為軸的直徑,花鍵處按平均直徑計算;a、b為齒輪上作用力距支座A、B的距離;L為支座間距離。
軸的全撓度為=0.15mm0.2mm。
軸在垂直面和水平面撓度的允許值為=0.05~0.10mm,=0.10~0.15mm。齒輪所在平面的轉(zhuǎn)角不應(yīng)超過0.002rad。
校核都在范圍內(nèi),符合要求。
與中間軸齒輪常嚙合的第二軸上的齒輪,常通過青銅襯套或滾針軸承裝在軸上,也有的省去襯套或滾針軸承直接裝在軸上,這就能夠增大軸的直徑,因而使軸的剛度增加。
作用在齒輪上的徑向力和軸向力,使軸在垂直面內(nèi)彎曲變形,而圓周力使軸在水平面內(nèi)彎曲變形。在求取支點(diǎn)的垂直面和水平面內(nèi)的支反力和之后,計算相應(yīng)的彎矩Mc、Ms。軸在轉(zhuǎn)矩和彎矩同時作用下,其應(yīng)力為
(6-9)
==18.94400
式中,;d為軸的直徑,花鍵處取內(nèi)徑;W為抗彎截面系數(shù)。 ·
在低擋工作時,σ≤400
第7章 同步器的選型
同步器有常壓式、慣性式和慣性增力式三種。常壓式同步器結(jié)構(gòu)雖然簡單,但有不能保證嚙合件在同步狀態(tài)下(即角速度相等)換擋的缺點(diǎn),現(xiàn)已不用。得到廣泛應(yīng)用的是慣性式同步器。慣性式同步器中有鎖銷式、鎖環(huán)式、滑塊式、多片式、和多錐式幾種。
7.1 鎖銷式同步器
7.1.1 鎖銷式同步器結(jié)構(gòu)
圖6-1所示鎖銷式同步器的摩擦元件是同步環(huán)2和齒輪3上的凸肩部分,分別在它們的內(nèi)圈和外圈設(shè)計有相互接觸的錐形摩擦面。鎖止元件位于滑動齒套1的圓盤部分孔中做出的錐形肩角和裝在上述孔中、在中部位置處有相同角度的斜面鎖銷4。鎖銷與同步環(huán)2剛性連接。彈性元件是位于滑動齒套1圓盤部分徑向孔中的彈簧7。在空擋位置,鋼球5在彈簧壓力作用下處在銷6的凹槽中,使之保持滑動齒套與同步環(huán)之間沒有相對移動。
圖7-1 鎖銷式同步器結(jié)構(gòu)方案
1-滑動齒套 2-同步環(huán) 3-齒輪 4-鎖銷
5-鋼球 6-銷 7-彈簧
在慣性式同步器中,彈性元件的重要性僅次于摩擦元件和鎖止元件,它用來使有關(guān)部分保持在中立位置的同時,又不妨礙鎖止、解除鎖止和完成換擋的進(jìn)行。
7.12 鎖銷式同步器工作原理
同步器換擋過程由三個階段組成。
第一階段,同步器離開中間位置,作軸向移動并靠在摩擦面上。摩擦面相互接觸瞬間,如圖6-1所示,由于齒輪3的角速度和滑動齒套1的角速度不同,在摩擦力矩作用下瑣銷4相對滑動齒套1轉(zhuǎn)動一個不大的角度,并占據(jù)圖上所示的鎖止位置。此時鎖止面接觸,阻止了滑動齒套向換擋方向移動。
第二階段,來自手柄傳至換擋撥叉并作用在滑動齒套上的力F,經(jīng)過鎖止元件又作用到摩擦面上。由于和不等,在上述表面產(chǎn)生摩擦力?;瑒育X套1和齒輪3分別與整車和變速器輸入軸轉(zhuǎn)動零件相連。于是,在摩擦力矩作用下,滑動齒套1和齒輪3的轉(zhuǎn)速逐漸接近,其角速度差=|-|減小了。在=0瞬間同步過程結(jié)束。
第三階段,=0,摩擦力矩消失,而軸向力F仍作用在鎖止元件上,使之解除鎖止?fàn)顟B(tài),此時滑動齒套和鎖削上的斜面相對移動,從而使滑動齒套占據(jù)了換擋位置。
鎖銷式同步器的優(yōu)點(diǎn)是零件數(shù)量少,摩擦錐面平均半徑較大,使轉(zhuǎn)矩容量增加。這種同步器軸向尺寸長是它的缺點(diǎn)。鎖銷式同步器多用于中、重型貨車的變速器中。
7.2 鎖環(huán)式同步器
7.2.1 鎖環(huán)式同步器結(jié)構(gòu)
如圖6-2所示,鎖環(huán)式同步器的結(jié)構(gòu)特點(diǎn)是同步器的摩擦元件位于鎖環(huán)1或4和齒輪5或8凸肩部分的錐形斜面上。作為鎖止元件是做在鎖環(huán)1或4上的齒輪和做在嚙合套7上的齒的端部,且端部均為斜面稱為鎖止面。彈性元件是位于嚙合套座兩側(cè)的彈簧圈。彈簧圈將置于嚙合套座花鍵上中部呈凸起狀的滑塊壓向嚙合套。在不換擋的中間位置,滑塊凸起部分嵌入嚙合套中部的內(nèi)環(huán)槽中,使同步器用來換檔的零件保持在中立位置上?;瑝K兩端伸入鎖環(huán)缺口內(nèi),而缺口的尺寸要比滑塊寬一個接合齒。
圖7-2 鎖環(huán)式同步器
1、4—鎖環(huán) 2—滑塊 3—彈簧圈 5、8—齒輪 6—嚙合套座 7—嚙合套
7.2.2 鎖環(huán)式同步器工作原理
換擋時,沿軸向作用在嚙合套上的換擋力,推嚙合套并帶動滑塊和鎖環(huán)移動,直至鎖環(huán)錐面與被接合、齒輪上的錐面接觸為止。之后,因作用在錐面上的法向力與兩錐面之間存在角速度,致使在錐面上作用有摩擦力矩,它使鎖環(huán)相對嚙合套和滑塊轉(zhuǎn)過一個角度,并由滑塊予以定位。接下來,嚙合套的齒端與鎖環(huán)齒端的鎖止面接觸(圖7-3a),使嚙合套的移動受阻,同步器處在鎖止?fàn)顟B(tài),換擋的第一階段工作至此已完成。換擋力將鎖環(huán)繼續(xù)壓靠在錐面上,并使摩擦力矩增大,與此同時在鎖止面處作用有與之方向相反的撥環(huán)力矩。齒輪與鎖環(huán)的角速度逐漸接近,在角速度相等的瞬間,同步過程結(jié)束,完成了換擋過程的第二階段工作。之后,摩擦力矩隨之消失,而撥環(huán)力矩使鎖環(huán)回位,兩鎖止面分開,同步器解除鎖止?fàn)顟B(tài),嚙合套上的接合齒在換擋力作用下通過鎖環(huán)去與齒輪上的接合齒嚙合(圖7-3b)完成同步換擋。
鎖環(huán)式同步器有工作可靠,零件耐用等優(yōu)點(diǎn),但因結(jié)構(gòu)布置上的限制,