購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
Microsystem Technologies 10 2004 531 535 Springer Verlag 2004 DOI 10 1007 s00542 004 0387 2 Replication of microlens arrays by injection molding B K Lee D S Kim T H Kwon B K Lee D S Kim T H Kwon however flow rate has the similar effect to PC It might be reminded that packing time does not affect the replicability if a gate is frozen since frozen gate prevents material from flowing into the cavity Therefore the effect of packing time disappears after a certain time depending on the processing conditions Fig 4a c leftside Surface profiles of microlens PC with diameter of 300 m a effect of packing pressure b effect of flow rate c effectof packing time Fig 5a c rightside Surface profiles of microlens PMMA with diameter of 300 m a effect of packing pressure b effect of flow rate c effect of packing time 4 2 Surface roughness Averaged surface roughness Ra values of 300 m diameter microlenses and the mold insert were measured by an atomic force microscope Bioscope AFM Digital Instruments The measurements were performed around the top of each microlens and the measuring area was 5 m 5 m Figure 6 shows AFM images and measured Ra values of microlenses PMMA replicas of microlens have the lowest Ra value 1 606 nm It may be noted that AFM measurement indicated that Ra value of injection molded microlens arrays is smaller than the corresponding one of the mold insert The reason for the improved surface roughness in the replicated microlens arrays is not clear at this moment but might be attributed to the reflow caused by surface tension during a cooling process It may be further noted that the Ra value of injection molded microlens arrays is comparable with that of fine optical components in practical use Fig 6 AFM images and averaged surface roughness Ra values of the mold insert and injection molded 300 m diameter microlenses a Nickel mold insert b PS c PMMA d PC 4 3 Focal length The focal length of lenses can be calculated by a wellknown equation as follows 12 nfR where f nl R1 and R2 are focal length refractive index of lens material two principal radii of curvature respectively For instance focal lengths of the molded microlenses were approximately calculated as 1 065 mm with R1 0 624 mm and R2 11 for 200 m diameter microlens 1 130 mm with R1 0 662 mm and R2 for 300 m microlens and 2 580 mm with R1 1 512 mm and R2 for 500 m microlens according to Eq 1 These calculations were based on an assumption that microlenses are replicated with PC nl 1 586 and have the identical shape of the mold insert It might be mentioned that the geometry of the molded microlens might be inversely deduced from an experimental measurement of the focal length 5 Conclusion The replication of microlens arrays was carried out by the injection molding process with the nickel mold insert which was electroplated from the microlens arrays master fabricated via a modified LIGA process The effects of processing conditions were investigated through extensive experiments conducted with various processing conditions The results showed that the higher packing pressure or the higher flow rate is the better replicability is achieved In comparison the packing time was found to have little effect on the replication of microlens arrays The injection molded microlens arrays had a smaller averaged surface roughness values than the mold insert which might be attributed to the reflow induced by surface tension during the cooling stage And PMMA replicas of microlens arrays had the best surface quality i e the lowest roughness value of Ra 1 606 nm The surface roughness of injection molded microlens arrays is comparable with that of fine optical components in practical use In this regard injection molding might be a useful manufacturing tool for mass production of microlensarrays References 1 Ruther P Gerlach B Go ttert J Ilie M Mu ller A O mann C 1997 Fabrication and characterization of microlenses realized by a modified LIGA process Pure Appl Opt 6 643 653 2 Popovic ZD Sprague RA Neville Connell GA 1988 Technique for monolithic fabrication of microlens array Appl Opt27 1281 1284 3 Beinhorn F Ihlemann J Luther K Troe J 1999 Micro lens arrays generated by UV laser irradiation of doped PMMA Appl Phys A68 709 713 4 Moon S Lee N Kang S 2003 Fabrication of a microlens array using micro compression molding with an electroformed mold insert J Micromech Microeng 13 98 103 5 Ong NS Koh YH Fu YQ 2002 Microlens array produced using hot embossing process Microelectron Eng 60 365 379 6 Lee S K Lee K C Lee SS 2002 A simple method for microlens fabrication by the modified LIGA process J Micromech Microeng 12 334 340 7 Kim DS Yang SS Lee S K Kwon TH Lee SS 2003 Physical modeling and analysis of microlens formation fabricated by a modified LIGA process J Micromech Microeng 13 523 531 8 Bauer W Knitter R Emde A Bartelt G Go hring D Hansjosten E 2002 Replication techniques for ceramic microcomponents with high aspect ratio Microsyst Technol 7 85 90 微透鏡陣列注塑成型的復制 B K Lee D S Kim T H Kwon 樸航科技大學 POSTECH 機械工程學院 San 31 Hyoja Dong Nam Gu Pohang 790 784 Korea 電子郵箱l thkwon postech ac kr 摘要 微透鏡陣列注塑成型 可作為一種非常重要的大量生產技術 因此我們在近來的研究中非常關注 為了進 一步了解注塑成型在不同的加工條件下對可復制的微透鏡陣列剖面的影響 如流量 填料壓力和填料時間 對 3 種 不同的高分子材料 PS PMMA 和 PC 進行了大量的試驗 鎳金屬模具嵌件微陣列就是利用改良的 LIGA 技術電鍍主 裝配的顯微結構制造的 在表面輪廓得到測量的前提下 研究工藝條件對可復制的微透鏡陣列的影響 實驗結果表 明 填料壓力和流速對注射模塑的終產品的表面輪廓有重要的影響 原子力顯微鏡測量表明 微透鏡陣列注塑 成型的平均表面粗糙度值小于模具嵌件成型 并在實際運用中 能與精細的光學元件相媲美 1 說明 微型光學產品 如微透鏡或微透鏡陣列已廣泛應用于光學數據存儲 生物醫(yī)學 顯示裝置等各 個光學領域 微透鏡和微透鏡陣列不僅在實踐應用上 而且在微型光學的基礎研究上都是非常重要 的 有幾種微透鏡或微透鏡陣列的制作方法 如改良的 LIGA 技術 1 光阻回流進程 2 紫外激 光照射 3 等 還有復制技術 如注塑模壓成型 4 和熱壓 5 技術 這種方法對于減少大規(guī)模生產 的微型光學產品的成本尤為重要 由于其優(yōu)越的生產和再生產能力 只要注塑成型過程中能很好的 復制微觀結構 那么肯定是最適合于降低大量生產成本的方法 基于這點 檢查注塑成型能力并確定成型加工條件是注塑成型微觀結構過程中最重要的步驟 在本次研究中 我們考察了工藝條件對可復制的微透鏡陣列的注射成型的影響 微透鏡陣列是用之 前介紹過 6 7 的改良的 LIGA 技術來編制的 注塑成型實驗采用的是一種鍍鎳金屬模具 來探討了 幾種不同工藝條件對成型的影響 通過對微透鏡陣列的表面輪廓測量 用來分析工藝條件產生的影 響 最后 利用原子力顯微鏡 AFM 測量微透鏡的表面粗糙度值的大小 2 模具嵌件的制造 利用改良的 LIGA 技術 6 在一個有機玻璃板上制造出具有幾種不同直徑微透鏡陣列 此種技 術是先用 X 光照射有機玻璃板 然后再進行熱處理兩部分構成的 X 射線照射引起有機玻璃分子質 量的減少 同時降低了玻璃化轉變溫度 并因此導致凈含量的增加 在熱循環(huán)的作用下 微透鏡發(fā) 生微膨脹 7 利用 7 中提出的方法 結合改良的 LIGA 技術可以預測微透鏡形狀的變化過程 在試驗中使用的微透鏡陣列 有 500 m 2 2 陣列 300 m 2 2 和 200 m 5 5 的直徑陣列 高分別是 20 81 m 17 21 m 和 8 06 m 采用改良的 LIGA 技術制造微透鏡陣列作為一個主要的技 術 用來制作鍍鎳的金屬模具的注塑成型 另一些特殊材料 因為它們的強度不夠或熱性能差而不 能直接進行微細加工 當作模具或金屬模具使用 如硅 光阻劑或高分子材料 盡量使用具有良好 機械性能和熱性能的金屬材料 因為它們能在可復型加工過程中經受高壓力和不斷變化的溫度 因 此 為了利用這種復制技術進行大批量生產 我們選擇使用金屬模具材料而不是有機玻璃硅晶體 一些特殊技術 如低壓注塑成型 8 技術 應該作為良好的復制加工方法被采納 電鍍模具的最終大小為 30 mm 30 mm 3mm 鍍鎳金屬模具所具有的微透鏡陣列如圖 1 所示 圖 1 鍍鎳模具嵌件的制造 a 直接觀察 b 直徑為 200 m 的微透鏡陣列電子顯微鏡圖像 c 直徑為 300 m 的微透鏡陣列電子顯微鏡圖像 3 注塑成型實驗 傳統(tǒng)注塑機 Allrounders 220 M Arburg 多用做實驗機 注塑模具設計的模架就是利用一塊框 形支撐板固定鍍鎳模具 如圖 2 所示 圖 2 注塑模具實驗中使用的模架和嵌件 用修改的微透鏡陣列確定模具零件孔形加強板 在這次實驗中 是一塊矩形板 的外部形狀 模架本身已含有傳輸系統(tǒng) 如注射口 流道及澆口 通過支撐板 模具流道和滑動的模具表面將熔 融聚合物引入模腔 用這種方法設計的模架 能夠使模具零件更換起來簡單容易 不過 有時候 也使用具有特定孔徑形狀的支撐板 實驗主要用三種普通高分子材料 PS 615APR 陶氏化學 有機玻璃 IF870 LG MMA 和 PC Lexan 141R 進行注塑成型 這些高分子材料通常在光學元件上使用 它們有不同的折射率 PS PMMA 和 PC 的折射率分別為 1 600 1 490 和 1 586 能生產出具有不同的光學特性的產品 例如 具有相同的幾何尺寸卻有不同的焦距的光學元件 通過改變每個高分子材料的流速 充填壓力和充填時間獲得 7 種加工條件進行注塑成型試驗 此外 為了檢查是否能可再生產 同一實驗往往需要重復三次 可能有人會指出 實驗中沒有考慮 模具溫度的影響 這是因為溫度效應相對來說不是主要因素 而且微透鏡陣列曲率半徑比其他微觀 結構的高寬縱橫比大 正是因為較大的微觀結構高寬縱橫比 使我們目前研究的溫度效應更加可靠 并計劃在將來實驗時進行單獨報告 因此 在這項研究中 我們保持模具溫度不變 而流速 充 填壓力和充填的時間都變化的情況下 能更清楚的觀察其產生效果 表 1 詳細的列出了三種高分子 材料 PC PMMA 和 PS 在其他加工條件都保持不變 將模具溫度分別設定為 80 70 和 60 的情 況下的實驗結果 表 1 注塑模具實驗中詳細的工藝條件 序號 流 速 cc s 充填時間 s 充填壓力 MPa 1 12 0 5 0 10 0 2 12 0 5 0 15 0 3 12 0 5 0 20 0 4 12 0 2 0 10 0 5 12 0 10 0 10 0 6 18 0 5 0 10 0 PS 7 24 0 5 0 10 0 1 6 0 10 0 10 0 2 6 0 10 0 15 0 3 6 0 10 0 20 0 4 6 0 5 0 10 0PMMA 5 6 6 0 9 0 15 0 10 0 10 0 10 0 續(xù)表 1 序號 流 速 cc s 充填時間 s 充填壓力 MPa 7 12 0 10 0 10 0 1 6 0 5 0 5 0 2 6 0 5 0 10 0 3 5 5 0 10 0 15 0 5 0 6 6 0 6 0 9 0 5 0 5 0 PC 7 12 0 5 0 5 0 可能有人會指出 我們的實驗沒有考慮型腔出現(xiàn)真空狀態(tài)時的情況 其實大可不必擔心 因為 在本研究中的注射階段 大曲率半徑的微透鏡陣列不會把空氣引入到型腔中 4 討論和結果 在詳細討論實驗結果之前 認真思考一下 可能有助于總結為什么流速 充填壓力和充填時間 在這項研究中被選為不同的加工條件 影響復制的質量 就流速而言 可能存在一個最佳流速 而 在完成充填之前 流速太小會使得熔融聚合物過冷卻 從而可能導致所謂的短暫的不連續(xù)現(xiàn)象 而 過高的流速增大了壓力面積 這是不可取的 充填階段是一般要求 是要在冷卻時能夠彌補熱熔融聚合物的體積收縮 因此 在這個階段 應有足夠的熔融聚合物流入型腔并控制產品的尺寸精度 越高的充填壓力 越長的充填時間 將 使更多的材料持續(xù)不斷的流向型腔 然而 過高的充填壓力 有時可能造成不均勻的密度分布 從而產生劣質的光學質量 過長的充填時間 不利于在各自澆口處的冷凝 并且會阻止熔融聚合物 流入型腔 因此 我們需要研究不同的充填壓力和充填時間所產生的影響 4 1 表面輪廓 圖 3 所示的是用電子顯微鏡 SEM 掃描的不同注塑微透鏡的直徑的 PMMA 圖像 a 以及不同 材料的圖像 b 代表性的模具表面輪廓以及所有注塑微陣列都是通過三維輪廓測量系統(tǒng) NH 3N Mitaka 測定的 圖 3 注塑模具的微透鏡陣列和微透鏡的電子顯微鏡圖像 a PMMA 微透鏡陣列 b 不同材料直徑為 300 m 微透鏡陣列的注塑模具 作為一個可復制陣列的測量工具 我們已經確定了在模具與相應的模具嵌件分開的微陣列之 間輪廓的相對高度偏差 所有的微透鏡陣列相對偏差值列在表 2 中 具體見表所示 表 2 表面輪廓相對偏差 相對偏差 直徑 m 1 2 3 4 5 6 7 PS 200 300 500 7 62 5 86 2 38 7 59 2 03 0 38 2 08 2 86 0 51 5 61 1 47 8 66 6016 1 47 11 44 4 29 1 47 5 73 1 95 PMMA 200 300 500 7 20 5 77 0 66 1 31 5 60 1 62 3 88 6 45 3 98 5 80 5 95 2 80 0 97 5 95 0 72 8 53 6 68 0 90 4 86 2 62 0 72 PC 200 300 500 23 02 6 20 0 93 16 05 4 96 5 09 16 87 2 66 1 86 19 66 4 53 1 88 33 97 4 78 6 96 18 67 1 79 2 43 2 94 4 15 1 55 值得一提的是 高分子材料的塑性會影響其重復使用性能 因此在研究中 三種高分子材料總 的相對誤差是各不相同的 PC 是三種聚合物中最難注塑成型的材料 在直徑最小的例子中產生最大 的相對偏差 那都是意料之中的事 在這種特殊情況下 充填時間并不對偏差產生顯著影響 最好 的解決方法是采用相對低的流速和充填壓力 PS 和 PMMA 最小的直徑的相對偏差要比 PC 小的多 從表 2 可以看出 直徑越大 相對偏差越小 當然 在注射和保壓階段 直徑大的微透鏡陣列 容易比直徑小的更容易填補 不管是在什么加工條件下和使用什么材料 大直徑的微透鏡陣列一般 都能得到較好的復型 研究發(fā)現(xiàn)直徑 500 m 的 PS 最好復型 一般而言 與 PMMA 和 PC 相比較 PS 具有良好的成型性能 根據表 2 的數據 在考察最小的直徑的 PS 和 PMMA 的相對偏差時 可能會有人提出一些消極的 觀點 認為偏差過大 但是在這些數據中可以得到 高度上的絕對偏差在 0 1 m 左右 這是在測量 系統(tǒng)誤差范圍以內 所以 在解讀復型實驗數據時可以忽略這些消極的觀點 直徑為 300 m 的 PC 和 PMMA 微透鏡表面輪廓分別如圖 4 和圖 5 所示 正如之前所述 在圖 4 所示的 PC 中 越高的充填壓力或越高流速復制微透鏡時效果越好 而充填時間在這些復型例子中只 起一點作用 如圖所示 對于 PMMA 來說 充填壓力和充填時間的作用微不足道 然而 流速對于 PC 也有類似的效果 它可以提醒我們注意如果一個澆口凍結了 并阻止材料流入型腔時 充填時間 并不影響復型 因此 經過一段時間后 充填時間的影響 主要取決于加工條件 圖 4 直徑為 300 m 的 PC 微透鏡表面輪廓 圖 5 直徑為 300 m 的 PMMA 微透鏡表面輪廓 a 充填壓力的影響 b 流速的影響 a 充填壓力的影響 b 流速的影響 c 充填時間的影響 c 充填時間的影響 4 2 表面粗糙度 直徑 300 m 的微透鏡和模具嵌件的平均表面粗糙度 Ra 的值 是用原子力顯微鏡 Bioscope AFM 數字儀表 測量的 測量了每個微透鏡頂點周圍面積為 5 m 5 m 區(qū)域 圖 6 所示的是原子 力顯微鏡圖象和所測量的微透鏡 Ra 的值 PMMA 微透鏡復型具有最低的 Ra 值 為 1 606nm 通過 AFM 的測量表明 注塑成型微透鏡陣列的 Ra 值比相對應的模具嵌件要小 因此 現(xiàn)在還不清楚如 何改善可復制微透鏡陣列的表面粗糙度 也許可以從冷卻過程的回流而造成的表面張力入手 它可 能會進一步得出 在實際運用中 微透鏡陣列注塑成型的平均表面粗糙度值能與精細的光學元件相 媲美 圖 6 直徑為 300 m 的模具嵌件和注塑模具微透鏡的原子力顯微鏡 AFM 圖像 和平均表面粗糙度 Ra 值 a 鍍鎳模具嵌件 b PS c PMMA d PC 4 3 焦距 焦距可以通過下面這個著名的等式計算得出 12 nfR 式中 f nl R1 和 R2 分別指焦距 透鏡材料的折射率 兩個主曲率半徑 比如 根據等式可 以計算得出 直徑為 200 m 的模具微透鏡的焦距大約為 1 065mm 其中 R1 0 624mm 和 R2 直徑 300 的微透鏡大約為 1 130mm 其中 R1 0 662mm 和 R2 直徑 500 m 的微透鏡大約為 2 580mm 其中 R1 1 512mm 和 R2 1 這些計算結果是基于假設與模具嵌件具有相同形狀的 PC nl 1 586 可復型的微透鏡而得到的 所以由此推導出的幾何尺寸可能與實驗所測量的焦距相反 5 總結 通過使用改良的 LIGA 技術電鍍鎳金屬模具嵌件 改變各種加工條件進行大量的實驗 研究工 藝條件對可復型的微透鏡的注塑成型過程的影響 結果顯示越高的充填壓力或越高流速 能得到越 好的可復型效果 相比之下 充填時間對微透鏡陣列復型的影響卻很小 也許是因為冷卻階段回流的表面張力造成的 注射成型微透鏡陣列比模具嵌件有更小的平均表 面粗糙度值 PMMA 復型的微透鏡陣列具有最好的表面質量 即最低粗糙度值 Ra 1 606 nm 在實 際應用中 注塑成型微透鏡陣列的表面粗糙度能與精密的光學元件相媲美 就憑這一點 注塑成型 將成為大規(guī)模生產微透鏡陣列的一個有用方法 6 參考文獻 1 Ruther P Gerlach B Go ttert J Ilie M Mu ller A O mann C 1997 Fabrication and characterization of microlensesrealized by a modified LIGA process Pure Appl Opt 6 643 653 2 Popovic ZD Sprague RA Neville Connell GA 1988 Techniquefor monolithic fabrication of microlens array Appl Opt27 1281 1284 3 Beinhorn F Ihlemann J Luther K Troe J 1999 Micro lens arrays generated by UV laser irradiation of doped PMMA Appl Phys A68 709 713 4 Moon S Lee N Kang S 2003 Fabrication of a microlens array using micro compression molding with an electroformed mold insert J Micromech Microeng 13 98 103 5 Ong NS Koh YH Fu YQ 2002 Microlens array produced using hot embossing process Microelectron Eng 60 365 379 6 Lee S K Lee K C Lee SS 2002 A simple method for microlens fabrication by the modified LIGA process J Micromech Microeng 12 334 340 7 Kim DS Yang SS Lee S K Kwon TH Lee SS 2003 Physical modeling and analysis of microlens formation fabricated by a modified LIGA process J Micromech Microeng 13 523 531 8 Bauer W Knitter R Emde A Bartelt G Go hring D Hansjosten E 2002 Replication techniques for ceramic microcomponents with high aspect ratio Microsyst Technol 7 85 90 河南機電高等??茖W校 學生畢業(yè)設計 論文 中期檢查表 學生姓名 學 號 指導教師 課題名稱 螺紋蓋注塑模設計 難易程度 偏難 適中 偏易選題情況 工作量 較大 合理 較小 任務書 有 無 開題報告 有 無符合規(guī)范化 的要求 外文翻譯質量 優(yōu) 良 中 差 學習態(tài)度 出勤情況 好 一般 差 工作進度 快 按計劃進行 慢 中期工作匯 報及解答問 題情況 優(yōu) 良 中 差 中期成績評定 所在專業(yè)意見 負責人 年 月 日 河南機電高等專科學校 畢業(yè)設計 論文 任務書 系 部 材料工程系 專 業(yè) 學 生 姓 名 學 號 設計 論文 題目 螺紋蓋注塑模 起 迄 日 期 2006 年 4 月 1 日 5 月 15 日 指 導 教 師 發(fā)任務書日期 2006 年 4 月 1 日 任務書填寫要求 1 畢業(yè)設計 論文 任務書由指導教師根據各課題的具體情況 填寫 經學生所在專業(yè)的負責人審查 系主管領導簽字后生效 此任 務書應在畢業(yè)設計 論文 開始前一周內填好并發(fā)給學生 2 任務書內容必須用黑墨水筆工整書寫或按教務處統(tǒng)一設計的 電子文檔標準格式 可從教務處網頁上下載 打印 不得隨便涂改或 潦草書寫 禁止打印在其它紙上后剪貼 3 任務書內填寫的內容 必須和學生畢業(yè)設計 論文 完成的 情況相一致 若有變更 應當經過所在專業(yè)及系主管領導審批后方可 重新填寫 4 任務書內有關 系 專業(yè) 等名稱的填寫 應寫中文全稱 不能寫數字代碼 學生的 學號 要寫全號 請規(guī)范化填寫 5 任務書內 主要參考文獻 的填寫 應按照國標 GB 7714 87 文后參考文獻著錄規(guī)則 的要求書寫 不能有隨意性 6 有關年月日等日期的填寫 應當按照國標 GB T 7408 94 數據元和交換格式 信息交換 日期和時間表示法 規(guī)定的要求 一律用阿拉伯數字書寫 如 2002 年 4 月 2 日 或 2002 04 02 畢 業(yè) 設 計 論 文 任 務 書 1 本畢業(yè)設計 論文 課題來源及應達到的目的 名稱 螺紋蓋注塑模 材料 PS 2 本畢業(yè)設計 論文 課題任務的內容和要求 包括原始數據 技術要求 工 作要求等 內容 1 模塑工藝規(guī)程的編制 2 注塑模結構設計 3 模具設計有關計算 4 模具加熱與冷卻系統(tǒng)的計算 5 模具高度的校核 6 注塑機有關參數的校核 所在專業(yè)審查意見 負責人 年 月 日 系部意見 系領導 年 月 日 河南機電高等??茖W校 畢 業(yè) 設 計 論 文 論文題目 螺紋蓋注塑模 系 部 專 業(yè) 班 級 學生姓名 學 號 指導教師 2006 年 5 月 15 日 畢業(yè)設計 論文 成績 畢業(yè)設計成績 指導老師認定成績 小組答辯成績 答辯成績 指導老師簽字 答辯委員會簽字 答辯委員會主任簽字 畢業(yè)設計 論文任務書 題目 螺紋蓋注塑模 內容 1 模塑工藝規(guī)程的編制 2 注塑模結構設計 3 模具設計有關計算 4 模具加熱與冷卻系統(tǒng)的計算 5 模具高度的校核 6 注塑機有關參數的校核 原始資料 名稱 螺紋蓋注塑模 材料 PS 插圖清單 圖 1 塑件圖 1 圖 2 型腔排列方式 8 圖 3 主流道襯套 9 圖 4 推桿 20 圖 5 復位桿 21 圖 6 推板 21 畢業(yè)設計 論文說明書目錄 緒論 1 第 1 章 模塑工藝規(guī)程的編制 3 1 1 塑件的工藝性分析 3 1 2 計算塑件的體積和質量 4 1 3 選用成型設備 5 1 4 注射量的校核 5 1 5 注射壓力校核和鎖模力校核 5 第 2 章 注塑模結構設計 7 2 1 分型面的選擇 7 2 2 確定型腔的排列方式 7 2 3 澆注系統(tǒng)的設計 8 第 3 章 成型零件工作尺寸的計算 13 3 1 型腔的工作尺寸計算 13 3 2 小型芯的計算 14 3 3 螺紋型芯的計算 14 3 4 型腔側厚壁和底板厚度的計算 15 第 4 章 成型零件材料的選用 17 第 5 章 合模導向機構的設計 18 第 6 章 脫模頂出機構的設計 19 6 1 推出機構設計 19 6 2 脫模機構設計 19 第 7 章 其他結構零件的設計 20 7 1 推桿 20 7 2 復位桿 20 7 3 模板設計 21 7 4 墊塊設計 21 7 5 支撐柱 21 7 6 推板 21 第 8 章 模具加熱與冷卻系統(tǒng)的計算 22 8 1 求塑件在硬化四每小時釋放的熱量 22 8 2 求冷卻水的體積流量 22 第 9 章 模具閉合高度的確定 23 第 10 章 注射機有關參數的校核 24 第 11 章 繪制模具總裝圖和非標準件零件工作圖 25 第 12 章 結論 26 致謝 28 參考文獻 29 畢業(yè)設 論文計題目 摘要 本課題所設計的模具是螺紋注塑模 此模具是典型的三板式模具 即雙分型 面注塑模 雙分型面注塑模有兩個分型面 開模時 模具首先沿 面分型分 型后澆注系統(tǒng)凝料由此取出 繼續(xù)開模 模具沿 面分型 分型后塑件由此 脫出 本塑件采用的材料是流動性和成型性優(yōu)良 成品率高 但易出現(xiàn)裂紋 成 型塑件脫模斜度不宜過小的 PS 在注射過程中為便于制品成型 應盡量縮短塑料 在注射過程中的流程 為了不影響塑件的外觀和使用性能此模具采用點澆口形式 為成型塑件的內螺紋部分 需要一個螺紋型芯 該模具采用模外手工脫模方式 為保證螺紋型芯在開模時被帶往動模 設置了由環(huán)形拉簧及卡環(huán)組成的卡環(huán)裝置 為了保證生產的連續(xù)性 螺紋型芯應有備件 以供循環(huán)使用 關鍵詞 雙分型面 點澆口 螺紋型芯 卡環(huán)裝置 畢業(yè)設計 論文英文題目 Abstract The mould that this subject designs is moulded by the note of the whorl This mould is a mould of three typical modes in Chinese operatic music namely a note is moulded in each type each type a note moulds two type one while opening the mould the mould pours the system to congeal the material to take out from this after the dividing type assigning to type first of all Continuing opening the mould the mould moulds one to deviate from from this after the dividing type along the dividing type Mould pieces of material that adopt mobility and shaping fine yield high originally but apt to appear crackle shaping should not mould pieces of drawing of patterns slope over little PS In process of injection among for benefit products shaping should try hard shorten plastics procedure on process of injection For not influencing this mould of appearance and serviceability which mould one to adopt some runner forms For shaping mould piece interior whorl part need one piece whorl type core This mould adopt mould outside craft drawing of patterns way for guarantee whorl type the cores while opening the mould take move by mould Carlos made up of annular extension spring and card ring to set up surround the device For guarantee produce continuity whorl type the cores should have spare part for recycle Keyword Each type Some runner Whorl type core The card surrounds the device